Skip to main content

Production and Properties of Large Numbers of Dendritic Cells from Human Blood

  • Chapter
Book cover Dendritic Cells in Fundamental and Clinical Immunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 378))

Abstract

Dendritic cells (DC) form a system of antigen presenting cells that are specialized to stimulate resting T cells and to initiate T-dependent immune responses (“nature’s adjuvant”) [for review see 1]. Despite the difficulties in purifying this trace (< 1% at most sites) cell population a good deal is known about how DC sensitize T cells both in tissue culture and whole animal models. The limited numbers of DC hindered, however, molecular studies and the use of these cells for adoptive immunotherapy. In 1992 we described a simple method to grow large numbers of DC from murine blood2 or bone marrow3. In this liquid culture system GM-CSF induced MHC class II-negative progenitor cells to develop proliferating cellular aggregates, and from these, many typical DC were then released. These DC exhibited a characteristic morphology, mobility, phenotype, and strong T cell stimulatory capacity. Importantly, DC grown in such cultures have been shown to process antigen, to home to the T-dependent regions, and to sensitize mice in vivo thus illustrating their potential as immunogens 2,4 . In the human system GM-CSF + TNFβ was then shown to induce the formation of substantial numbers of DC from CD34+ cord blood progenitor cells5,6. Putative DC (as judged from morphology and phenotype, functional assays were not performed) yet only in small numbers could also be generated from CD34+ human bone marrow progenitors, again in the presence of GM-CSF + TNFa7. Neither neonatal blood nor bone marrow are, however, an ideal source of DC for potential clinical applications (e.g. immunotherapy). Peripheral blood would be a most suitable source, yet the enrichment of substantial numbers of CD34+ cells is impractical due to their low incidence (< 0.1% of mononuclear cells as opposed to 1–4 % in bone marrow8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Steinman, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol. 9:271–296(1991).

    Article  PubMed  CAS  Google Scholar 

  2. K. Inaba, R.M. Steinman, M.W. Pack, H. Aya, M. Inaba, T. Sudo, S. Wolpe, and G. Schuler,Identification of proliferating dendritic cell precursors in mouse blood, J. Exp. Med. 175:1157–1167 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. K. Inaba, M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R.M. Steinman,Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, J. Exp. Med. 176:1693–1702 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. K. Inaba, M. Inaba, M. Naito, and R.M. Steinman, Dendritic cell progenitors phagocytose particulates,including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo, J. Exp. Med. 178:479–488 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. C. Caux, C. Dezutter-Dambuyant, D. Schmitt, and J. Banchereau, GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells, Nature 360:258–261 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. F. Santiago-Schwarz, E. Belilos, B. Diamond, and S.E. Carsons, TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages, J. Leukocyte Biol. 52:274–281 (1992).

    PubMed  CAS  Google Scholar 

  7. C.D.L. Reid, A. Stackpoole, A. Meager, and J. Tikerpae, Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow, J. Immunol. 149:2681–2688 (1992).

    PubMed  CAS  Google Scholar 

  8. H. Ema, T. Suda, Y. Miura, and H. Nakauchi, Colony formation of clone-sorted human hematopoietic progenitors, Blood 75:1941–1946 (1990).

    PubMed  CAS  Google Scholar 

  9. H. Mayani, W. Dragowska, and P.M. Lansdorp, Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells, Blood 81:3252–3258 (1993).

    PubMed  CAS  Google Scholar 

  10. C.J. Eaves, Peripheral blood stem cells reach new heights, Blood 82:1957–1959 (1993).

    PubMed  CAS  Google Scholar 

  11. N. Romani, S. Gruner, D. Brang, E. Kämpgen, A. Lenz, B. Trockenbacher, G. Konwalinka, P.O.Fritsch, R.M. Steinman, and G. Schuler, Proliferating dendritic cell progenitors in human blood, J. Exp. Med. 180:83–93 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. N. Romani, A. Lenz, H. Glassel, H. Stössel, U. Stanzl, O. Majdic, P. Fritsch, and G. Schuler, Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function, J. Invest. Dermatol. 93:600–609 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. M. Kashihara, M. Ueda, Y. Horiguchi, F. Furukawa, M. Hanaoka, and S. Imamura, A monoclonal antibody specifically reactive to human Langerhans cells. J. Invest. Dermatol. 87:602–612 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. P.S. Freudenthal and R.M. Steinman, The distinct surface of human blood dendritic cells, as observed after an improved isolation method, Proc. Natl. Acad. Sci. USA 87:7698–7702 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. C.H. Weaver, CD. Buckner, K. Longin, F.R. Appelbaum, S. Rowley, K. Lilleby, J. Miser, R. Storb, J.A.Hansen, and W. Bensinger, Syngeneic transplantation with peripheral blood mononuclear cells collected after the administration of recombinant human granulocyte colony-stimulating factor, Blood 82:1981–1984 (1993).

    PubMed  CAS  Google Scholar 

  16. K. Inaba, M. Inaba, M. Deguchi, K. Hagi, R. Yasumizu, S. Ikehara, S. Muramatsu, and R.M. Steinman, Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow, Proc. Natl. Acad. Sci. USA 90:3038–3042 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. J.H. Jansen, G.-J.H.M. Wientjens, W.E. Fibbe, R. Willemze, and H.C. Kluin-Nelemans, Inhibition of human macrophage colony formation by interleukin 4, J. Exp. Med. 170:577–582 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. J. Gerdes, H. Lemke, H. Baisch, H.H. Wacker, U. Schwab, and H. Stein, Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67, J. Immunol. 133:1710–1715 (1984).

    PubMed  CAS  Google Scholar 

  19. A. Lenz, M. Heine, G. Schuler, and N. Romani, Human and murine dermis contain dendritic cells, J.Clin. Invest. 92:2587–2596 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. U. O’Doherty, R.M. Steinman, M. Peng, P.U. Cameron, S. Gezelter, I. Kopeloff, W.J. Swiggard, M.Pope, and N. Bhardwaj, Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium, J. Exp. Med. 178:1067–1078 (1993).

    Article  PubMed  Google Scholar 

  21. J.W. Young and R.M. Steinman, Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells, J. Exp. Med. 171:1315–1332 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. K. Inaba, J.P. Metlay, M.T. Crowley, and R.M. Steinman, Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J. Exp. Med. 172:631–640 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. C. Caux, I. Durand, I. Moreau, V. Duvert, S. Saeland, and J. Banchereau, Tumor necrosis factor a cooperates with interleukin 3 in the recruitment of a primitive subset of human CD34+ progenitors, J. Exp. Med. 177:1815–1820 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. F. Santiago-Schwarz, N. Divaris, C. Kay, and S.E. Carsons, Mechanisms of tumor necrosis factorgranulocyte-macrophage colony-stimulating factor-induced dendritic cell development, Blood 82:3019–3028 (1993).

    PubMed  CAS  Google Scholar 

  25. F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a, J. Exp. Med. 179:1109–1118 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. S. Porcelli, C.T. Morita, and M.B. Brenner, CDlb restricts the response of human CD4’8 T lymphocytes to a microbial antigen, Nature 360:593–597 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. J. Ruppert, D. Friedrichs, H. Xu, and J.H. Peters, IL-4 decreases the expression of the monocyte differentiation marker CD14, paralleled by an increasing accessory potency, Immunobiology 182:449–464(1991).

    Article  PubMed  CAS  Google Scholar 

  28. W. Kasinrerk, T. Baumruker, O. Majdic, W. Knapp, and H. Stockinger, CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor, J. Immunol. 150:579–584 (1993).

    PubMed  CAS  Google Scholar 

  29. G. Rossi, Development of a Langerhans’ cell phenotype from peripheral blood monocytes, Immunol. Lett. 31:189–198(1992).

    Article  PubMed  CAS  Google Scholar 

  30. J.D. Bos, E.A. Wierenga, J. Henk Sillevis Smitt, F.L. Van der Heijden, and M.L. Kapsenberg, Immune dysregulation in atopic eczema, Arch. Dermatol. 128:1509–1512 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. T. Bieber, H. De la Salle, A. Wollenberg, J. Hakimi, R. Chizzonite, J. Ring, D. Hanau, and C. De la Salle, Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (FcÎRi), J. Exp. Med. 175:1285–1290 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. B. Wang, A. Rieger, O. Kilgus, K. Ochiai, D. Maurer, D. Födinger, J.-P. Kinet, and G. Stingl, Epidermal Langerhans cells from normal human skin bind monomeric IgE via FcÎRI, J. Exp. Med. 175:1353–1365(1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schuler, G., Brang, D., Romani, N. (1995). Production and Properties of Large Numbers of Dendritic Cells from Human Blood. In: Banchereau, J., Schmitt, D. (eds) Dendritic Cells in Fundamental and Clinical Immunology. Advances in Experimental Medicine and Biology, vol 378. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1971-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1971-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5811-4

  • Online ISBN: 978-1-4615-1971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics