Skip to main content

Quantum Traffic Theory of Single Electron Transport in Nanostructures

  • Chapter
Quantum Transport in Ultrasmall Devices

Part of the book series: NATO ASI Series ((NSSB,volume 342))

Abstract

Consider the possibility of a single electron tunneling through an insulating region between two metallic islands. For this to be possible the electron must somehow acquire a charging energy of the order of e 2 /2C, where C is the effective inter-capacitance. At “high temperatures” where T >T C = e 2/2Ck B, the charging energy is easily supplied from thermal fluctuations. In the opposite extreme, the so-called Coulomb Blockade regime, T ≪ T C, the charging energy must be supplied externally for example by applying a voltage across the metal islands; otherwise the tunnelling is blocked. The simplest manifestation of the Coulomb blockade is thus a voltage offset e/2C in the current-voltage characteristics. The most interesting effects however derive from considering the transport of more than one electron through an array of capacitors (Likhaerev, 1988). The transporting/tunnelling electrons become highly correlated in space and time since they must “queue up” to let a definite maximum number of electrons into the capacitor system at a time commensurate with the local charging-energy conditions. The motion is quite subtle because the polarisation field resulting from a propagating electron is distributed over all the metallic islands resulting in electrostatic soliton states forming in the electrode array. It is this solitonic property, a moving particle plus an associated field, which imparts a considerable stability on the electrical properties of a driven capacitor chain at temperatures T ≪ T c (Barker et al., 1992a). It is not actually necessary for this effect to require tunnelling, any weak “conducting” path such as a charge leakage path, a hopping path or a bottleneck in the conductance map will suffice. It should also be noted that the condition T ≪ T c must be supplemented by the condition that the series resistance must exceed the quantum resistance R > R 0 = h/e 2 for the effects of quantum fluctuations to be suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Averin, D. V., and Likhaerev, K. K., 1986, J. Low Temp. Phys.62:345.

    Article  ADS  Google Scholar 

  • Babiker, S., 1994, Ph. D. Thesis, University of Glasgow.

    Google Scholar 

  • Babiker, S., and Barker, J. R., 1993, in “Proc. Intern. Workshop on Computational Electronics”, Ed. byC. Snowden, University of Leeds Press, 260.

    Google Scholar 

  • Barker, J. R., 1994a, in “Introduction to Molecular Electronics”, Ed. byM. Petty, D. Bloor, and M. Bryce, Edward-Arnold, London, 345.

    Google Scholar 

  • Barker, J. R., 1994b, Semiconduc. Sci. Technol. 9:911.

    Article  ADS  Google Scholar 

  • Barker, J. R., Roy, S., and Babiker, S., 1992a, in “Science and Technology of Mesoscopic Structures”, Ed. byS. Namba, C. Hamaguchi, and T. Ando, Springer-Verlag, London, 213.

    Google Scholar 

  • Barker, J. R., Weaver, J. M. R., Babiker, S., and Roy, S., 1992b, in “Proc. 2nd Intern. Symp. New Phenomena in Mesoscopic Structures”, Ed. byC. Hamaguchi.

    Google Scholar 

  • Braess, D., 1968, Unternehmenforsch. 12:258.

    MathSciNet  MATH  Google Scholar 

  • Cluckie, J., and Barker, J. R., 1994, Semiconduc. Sci. Technol.9:930.

    Article  ADS  Google Scholar 

  • Cooper, R. B., 1972, “Introduction to Queueing Theory”, Macmillan Company, New York.

    MATH  Google Scholar 

  • Fulton, T. A., and Dolan, G. J., 1987, Phys. Rev. Lett.89:109.

    Article  ADS  Google Scholar 

  • Geerligs, L. J., Anderagg, V. F., Holweg, P. A. M., Mooij, J. e., Pothier, H., Esteves, D., Urbina, C., and Devoret, M. H., 1990, Phys. Rev. Lett.64:2691.

    Article  ADS  Google Scholar 

  • Geerligs, L. J., Harmans, C. J. P. M., Kouwenhouven, L. P., Eds., 1993, “The Physics of Few Electron Nanostructures”, Physica B89:1.

    Google Scholar 

  • Kelly, F. P., 1991, Phil Trans. Roy. Soc. (London) A337:343.

    Article  ADS  MATH  Google Scholar 

  • Kleinrock, L., 1976, “Queueing Systems”, Academic Press, New York.

    MATH  Google Scholar 

  • Kuzmin, L. S., Delsing, P., Claeson, T., and Likhaerev, K. K., 1989, Phys. Rev. Lett.60:309; 62:2539.

    Google Scholar 

  • Leon-Garcia, A., 1994, “Probability and Random Processes for Electrical Engineering”, 2nd Ed., Addison-Wesley, New York, 546.

    Google Scholar 

  • Likhaerev, K. K., 1988, IBM J. Res. Develop. 32:144.

    Article  Google Scholar 

  • Meirev, U., Kastner, M. A., and Wind, S. J., 1989, Phys. Rev. B40:5871.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barker, J.R., Babiker, S. (1995). Quantum Traffic Theory of Single Electron Transport in Nanostructures. In: Ferry, D.K., Grubin, H.L., Jacoboni, C., Jauho, AP. (eds) Quantum Transport in Ultrasmall Devices. NATO ASI Series, vol 342. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1967-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1967-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5809-1

  • Online ISBN: 978-1-4615-1967-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics