Analytical Approaches to Alcohol Dehydrogenase Structures

  • Madalina T. Gheorghe
  • Ingemar Lindh
  • William J. Griffiths
  • Jan Sjövall
  • Tomas Bergman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 372)


Sequence analysis of polypeptides by Edman degradation is dependent on a free N-terminal α-amino group for the reaction with phenylisothiocyanate. However, alcohol dehydrogenases, like many other proteins, contain an acetylated N-terminal residue which blocks degradation (cf. Tsunasawa and Hirano, 1993). The conventional approach for blocked proteins involves enzymatic or chemical cleavage and reverse-phase HPLC-sepa-ration of fragments, followed by internal sequence analysis. The drawbacks associated with this technique are high protein consumption, long handling times and the fact that the N-terminal fragment remains inaccessible to Edman degradation. In this paper, we have tested direct chemical deblocking and applied it to both a synthetic peptide corresponding to the N-terminal segment of horse liver alcohol dehydrogenase and to the intact protein.


Alcohol Dehydrogenase Intact Protein Magnetic Circular Dichroism Edman Degradation Electro Spray Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, M., Bordoli, R.S., Sedgwick, R.D., and Tyler, A.N., 1981, Fast atom bombardment of solids (F.A.B.): A new ion source for mass spectrometry, J. Chem. Soc. Chem. Commun., 325.Google Scholar
  2. Bergman, T., Agerberth, B., and Jörnvall, H., 1991, Direct analysis of peptides and amino acids from capillary electrophoresis, FEBS Lett., 283:100.PubMedCrossRefGoogle Scholar
  3. Bergman, T., Jörnvall, H., Holmquist, B., and Vallee, B.L., 1992, A synthetic peptide encompassing the binding site of the second zinc atom (the “structural” zinc) of alcohol dehydrogenase, Eur. J. Biochem., 205:467.PubMedCrossRefGoogle Scholar
  4. Bergman, T., Jörnvall, H., Härd, T., Holmquist, B., and Vallee, B.L., 1993, A synthetic approach to analysis of the structural zinc site of alcohol dehydrogenase, in: Enzymology and Molecular Biology of Carbonyl Metabolism 4, Weiner, H., Crabb, D.W., and Flynn, T.G., eds., Plenum Press, New York, p. 419.CrossRefGoogle Scholar
  5. Carr, S.A., Hemling, M.E., Bean, M.F., and Roberts, G.D., 1991, Integration of mass spectrometry in analytical biotechnology, Anal. Chem., 63:2802.PubMedCrossRefGoogle Scholar
  6. Drum. D.E., Harrison, J.H., IV, Li, T.-K., Bethune, J.L., and Vallee, B.L., 1967, Structural and functional zinc in horse liver alcohol dehydrogenase, Proc. Natl. Acad. Sci. USA, 57:1434.PubMedCrossRefGoogle Scholar
  7. Drum, D.E., and Vallee, B.L., 1970, Differential chemical reactivities of zinc in horse liver alcohol dehydrogenase, Biochemistry, 9:4078.PubMedCrossRefGoogle Scholar
  8. Eklund, H., Nordström, B., Zeppezauer, E., Söderlund, G., Ohlsson, L, Boiwe, T., Söderberg, B.-O., Tapia, O., Brändén, C.-L, and Akeson, Å., 1976, Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution, J. Mol. Biol, 102:27.PubMedCrossRefGoogle Scholar
  9. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., and Whitehouse, C.M., 1989, Electrospray ionization for mass spectrometry of large biomolecules, Science, 246:64.PubMedCrossRefGoogle Scholar
  10. Formicka-Kozlowska, G., Schneider-Bernlöhr, H., von Wartburg, J.-P., and Zeppezauer, M., 1988, H8Zn(c)2 and Zn(c)2Co(n)2 human liver alcohol dehydrogenase, Eur. J. Biochem., 173:281.PubMedCrossRefGoogle Scholar
  11. Formicka-Kozlowska, G., and Zeppezauer, M., 1988, Horse liver alcohol dehydrogenase derivatives containing nickel(II) and cobalt(II) in the noncatalytic metal binding site, Inorg. Chim. Acta, 151:183.CrossRefGoogle Scholar
  12. Green, L.M., and Berg, J.M., 1989, A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three-dimensional structure, Proc. Natl. Acad. Sci. USA, 86:4047.PubMedCrossRefGoogle Scholar
  13. Jörnvall, H., 1985, Use of peptides in studies of protein structures and functions, in: Synthetic Peptides in Biology and Medicine, Alitalo, K., Partanen, P., and Vaheri, A., eds., Elsevier, Amsterdam, p. 13.Google Scholar
  14. Jörnvall, H., Höög, J.-O., von Bahr-Lindström, H., and Vallee, B.L., 1987a, Mammalian alcohol dehydrogenases of separate classes: intermediates between different enzymes and intraclass isozymes, Proc. Natl. Acad. Sci. USA, 84:2580.PubMedCrossRefGoogle Scholar
  15. Jörnvall, H., Persson, B., and Jeffery, J., 1987b, Characteristics of alcohol/polyol dehydrogenases: the zinc-containing long-chain alcohol dehydrogenases, Eur. J. Biochem., 167:195.PubMedCrossRefGoogle Scholar
  16. Kaiser, R., Holmquist, B., Hempel, J., Vallee, B.L., and Jörnvall, H., 1988, Class III human liver alcohol dehydrogenase: A novel structural type equidistantly related to the class I and class II enzymes, Biochemistry, 27:1132.PubMedCrossRefGoogle Scholar
  17. Kent, S.B.H., 1988, Chemical synthesis of peptides and proteins, Annu. Rev. Biochem., 57:957.PubMedCrossRefGoogle Scholar
  18. Lindh, I., Griffiths, W.J., Bergman, T., and Sjövall, J., 1994, Charge remote fragmentation of peptides derivatized with 4-aminonaphthalenesulphonic acid, Rapid Commun. Mass Spectrom., in press.Google Scholar
  19. Persson, B., Krook, M., and Jörnvall, H., 1991, Characteristics of short-chain alcohol dehydrogenases and related enzymes, Eur. J. Biochem., 200:537.PubMedCrossRefGoogle Scholar
  20. Sytkowski, A. J., and Vallee, B.L., 1976, Chemical reactivities of catalytic and noncatalytic zinc or cobalt atoms of horse liver alcohol dehydrogenase: differentiation by their thermodynamic and kinetic properties, Proc. Natl. Acad. Sci. USA, 73:344.PubMedCrossRefGoogle Scholar
  21. Tsunasawa, S., and Hirano, H., 1993, Deblocking and subsequent microsequence analysis of N-terminally blocked proteins immobilized on PVDF membrane, in: Methods in Protein Sequence Analysis, Imahori, K., and Sakiyama, F., eds., Plenum Press, New York, p. 45.CrossRefGoogle Scholar
  22. Vallee, B.L., and Auld, D.S., 1990, Active-site zinc ligands and activated H2O of zinc enzymes, Proc. Natl. Acad. Sci. USA, 87:220.PubMedCrossRefGoogle Scholar
  23. Vallee, B.L., and Auld, D.S., 1991, Zinc chemistry in function and structure of zinc proteins, in: Methods in Protein Sequence Analysis, Jörnvall, H., Höög, J.-O., and Gustavsson, A.-M., eds., Birkhäuser, Basel, p. 363.CrossRefGoogle Scholar
  24. Vallee, B.L., and Galdes, A., 1984, The metallobiochemistry of zinc enzymes, Adv. Enzymol., 56:283.PubMedGoogle Scholar
  25. Vallee, B.L., and Holmquist, B., 1980, Circular dichroism and magnetic circular dichroism, Adv. Inorg. Biochem., 2:27.Google Scholar
  26. Åkeson, Å., 1964, On the zinc content of horse liver alcohol dehydrogenase, Biochem. Biophys. Res. Commun., 17:211.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Madalina T. Gheorghe
    • 1
  • Ingemar Lindh
    • 1
  • William J. Griffiths
    • 1
  • Jan Sjövall
    • 1
  • Tomas Bergman
    • 1
  1. 1.Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden

Personalised recommendations