Studies of exciton localization in quantum-well structures by nonlinear-optical techniques

  • J. Hegarty
  • M. D. Sturge
Part of the NATO ASI Series book series (NSSB, volume 340)

Abstract

An exciton moving in a random potential is a promising model system for the study of localization effects, since its energy spectrum can be measured directly, and there are no complications resulting from Coulomb interaction. This paper reviews our work on the use of nonlinear techniques, such as hole burning and four-wave mixing, to detect the motion of two-dimensional excitons in thin GaAs-AlxGa1–x As heterostructures, in which the random potential comes from fluctuations in layer width. A clear distinction is found between the behavior of excitons below and above the absorption line center. Below the line center, hole burning is easy, and both spectral and spatial diffusion are slow, i.e., the excitons behave as if they are localized; above it the reverse is true. This is strong evidence for a mobility edge at the line center, which is the position predicted classically.

Keywords

Burning Migration Mercury Recombination Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492(1958).CrossRefGoogle Scholar
  2. 2.
    N. F. Mott and E. A. Davis. Electronic Processes in Noncrystalline Materials, 2nd éd. (Clarendon, Oxford, 1979).Google Scholar
  3. 3.
    P. W. Anderson, “Localization redux,” Physica 117/118B, 30 (1983).Google Scholar
  4. 4.
    A. F. Ioffe and A. R. Regel, “Noncrystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237 (1960).Google Scholar
  5. 5.
    E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in 2D,” Phys. Rev. Lett. 42, 673 (1979).CrossRefGoogle Scholar
  6. 6.
    D. J. Bishop, R. C. Dynes, and D. C. Tsui, “Nonmetallic conduction in electron inversion layers at low temperatures,” Phys. Rev. Lett. 44, 1153 (1980).CrossRefGoogle Scholar
  7. 7.
    R. G. Wheeler. “Magnetoconductance and weak localization in silicon inversion layers,” Phys. Rev. B 24, 4645 (1981).Google Scholar
  8. 8.
    D. J. Bishop, R. C. Dynes, and D. C. Tsui, “Magnetoresistance in Si MOSFETs; evidence for weak localization and correlation,” Phys. Rev. B 26, 773 (1982).Google Scholar
  9. 9.
    N. F. Mott, “Electrical properties of liquid mercury,” Phil. Mag. 13, 989 (1966)CrossRefGoogle Scholar
  10. see also M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, “Simple band model for amorphous semiconducting alloys;” Phys. Rev. Lett. 22, 1065 (1969).CrossRefGoogle Scholar
  11. 10.
    B. L. Altshuler, A. G. Aronov, and P. A. Lee, “Interaction effects in disordered Fermi systems in 2D,” Phys. Rev. Lett. 44, 1288 (1980).CrossRefGoogle Scholar
  12. 11.
    N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc. (London) 62, 416 (1949)CrossRefGoogle Scholar
  13. “On the transition to metallic conduction in semiconductors,” Can. J. Phys. 34, 1356 (1956)Google Scholar
  14. “The transition to the metallic state,” Phil. Mag. 6, 287 (1961).Google Scholar
  15. 12.
    A. E. White, R. C. Dynes, and J. P. Garno, “Low temperature magnetoresistance in 2D Mg films,” Phys. Rev. B 29, 3694 (1984).Google Scholar
  16. 13.
    E. Arnold. “Disorder induced carrier localization in Si surface layers,” Appl. Phys. Lett. 26, 705 (1974)CrossRefGoogle Scholar
  17. C. J. Adkins, “The Hall effect in inversion layers,” Phil. Mag. 38, 535 (1978).CrossRefGoogle Scholar
  18. 14.
    N. F. Mott, M. Pepper, S. Pollitt, R. H. Wallis, and C. J. Adkins, “The Anderson transition,” Proc. R. Soc. London Ser. A 345, 169 (1975).CrossRefGoogle Scholar
  19. 15.
    A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Prog. Solid State Chem. 10, 157 (1975).CrossRefGoogle Scholar
  20. 16.
    R. D. Dupuis, L. A. Moudy, and P. D. Dapkus, “Preparation and properties of Ga1-xAlxAs-GaAs heterojunctions grown by MOCVD,” in GaAs and Related Compounds, C. N. Wolfe, ed. (Institute of Physics, London, 1979).Google Scholar
  21. R. C. Miller, R. D. Dupuis, and P. M. Petroff, “High quality single GaAs quantum wells grown by MOCVD,” Appl. Phys. Lett. 44, 508–510 (1984).CrossRefGoogle Scholar
  22. 17.
    R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-Ga As-AlxGa1-xAs heterostructures,” Phys. Rev. Lett. 33, 827 (1974)CrossRefGoogle Scholar
  23. R. Dingle, “Confined carrier quantum states in ultra-thin semiconductor heterostructures,” Festkoerperprobleme 15, 21 (1975).CrossRefGoogle Scholar
  24. 18.
    R. C. Miller, D. A. Kleinman, and A. C. Gossard, “Energy gap discontinuities and effective masses for GaAs-AlxGa1-xAs quantum wells,” Phys. Rev. B 29, 7085 (1984).Google Scholar
  25. 19.
    R. C. Miller, AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (personal communication, 1984).Google Scholar
  26. 20.
    P. M. Petroff, A. C. Gossard, W. Wiegmann, and A. L. Savage, “Crystal growth kinetics in (GaAs)n-(AlAs)m superlattices deposited by MBE,” J. Crystal Growth 44, 5 (1978).CrossRefGoogle Scholar
  27. 21.
    C. Weisbuch, R. Dingle, A. C. Gossard, and W. Wiegmann, “Optical characterization of interface disorder in GaAs-AlxGa1-x As multi-quantum well structures,” Solid State Commun. 38, 709 (1981).CrossRefGoogle Scholar
  28. 22.
    O. Simpson, “Electronic properties of aromatic hydrocarbons III. Diffusion of excitons,” Proc. R. Soc. London Ser. A 238, 402 (1956).Google Scholar
  29. 23.
    J. P. Woerdman, “Some optical and electrical properties of a laser-generated free-carrier plasma in Si,” Philips Research Rep. Suppl. No. 7 (1971).Google Scholar
  30. 24.
    H. J. Eichler, “Forced light scattering at laser-induced gratings—a method for investigation of optically excited solids,” Festkoerperprobleme 18, 241 (1978).Google Scholar
  31. 25.
    J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of exciton transport in molecular crystals: the picosecond transient grating method,” Phys. Rev. Lett. 41, 131 (1978).CrossRefGoogle Scholar
  32. 26.
    M. D. Fayer, “Exciton coherence,” in Spectroscopy and Exciton Dynamics of Condensed Molecular Systems, V. M. Agranovich and R. M. Hochstrasser, eds. (North-Holland, Amsterdam, 1983).Google Scholar
  33. 27.
    J. Hegarty, M. D. Sturge, A. C. Gossard, and W. Wiegmann, “Degenerate four wave mixing at the 2D exciton resonance of GaAs multiquantum well structures,” Appl. Phys. Lett. 40, 132 (1982).CrossRefGoogle Scholar
  34. 28.
    H. Kalt, V. G. Lyssenko, R. Renner, and C. Klingshirn, “Laser-induced gratings and wave mixing in large-gap semiconductors,” J. Opt. Soc. Am. B 2, 1188–1196 (1985).Google Scholar
  35. 29.
    Y. M. Wong and V. M. Kenkre, “Extension of exciton transport theory for transient grating experiments into the intermediate coherence domain,” Phys. Rev. B 22, 3072 (1980).Google Scholar
  36. 30.
    M. D. Sturge, J. Hegarty, and L. Goldner, “Localization of 2D excitons in GaAs-AlGaAs quantum-well layers,” in Proceedings of the Seventeenth International Conference on the Physics of Semiconductors, D. Chadi, ed. (Springer-Verlag, New York, to be published).Google Scholar
  37. 31.
    W. M. Yen and P. M. Selzer, eds., Laser Spectroscopy of Solids (Springer-Verlag, Berlin. 1981).Google Scholar
  38. 32.
    R. Kopelman, “Energy transport in mixed molecular crystals,” in Spectroscopy and Excitation Dynamics of Condensed Molecular Systems, V. M. Agranovich and R. M. Hochstrasser, eds. (North-Holland, Amsterdam, 1983).Google Scholar
  39. 33.
    G. F. Imbusch and R. Kopelman, “Optical spectroscopy of electronic centers in solids,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), Chap. 1.Google Scholar
  40. 34.
    T. Holstein, S. K. Lyo, and R. Orbach, “Excitation transfer in disordered systems,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), Chap. 2.Google Scholar
  41. 35.
    E. Cohen and M. D. Sturge, “Fluorescent line narrowing, localized exciton states and spectral diffusion in the mixed semiconductor CdSx Se1-x,” Phys. Rev. B 25, 3828 (1982)Google Scholar
  42. 36.
    T. Takagahara, “Theoretical study of population dynamics of 2D excitons in GaAs-AlAs quantum well structures,” in Proceedings of the Seventeenth International Conference on the Physics of Semiconductors, D. Chadi; ed. (Springer-Verlag, New York, to be published).Google Scholar
  43. 37.
    A. J. Grant and E. A. Davis, “Hopping conduction in amorphous semiconductors,” Solid Sate Commun. 15, 563 (1974).CrossRefGoogle Scholar
  44. 38.
    D. E. McCumber and M. D. Sturge, “Linewidth and temperature shift of the R lines in ruby,” J. Appl. Phys. 34, 1682 (1983).CrossRefGoogle Scholar
  45. 39.
    D. Hsu and J. L. Skinner, “On the thermal broadening of zero-phonon impurity lines in absorption and fluorescent spectra,” J. Chem. Phys. 81, 1604 (1984).CrossRefGoogle Scholar
  46. 40.
    Y. Masumoto, S. Shionoya, and H. Kawaguchi, “Picosecond time-resolved study of excitons in GaAs-AlAs multiquantum well structures,” Phys. Rev. B 29, 3324 (1984).Google Scholar
  47. 41.
    J. Hegarty, M. D. Sturge, C. Weisbuch, A. C. Gossard, and W. Wiegmann, “Resonant Rayleigh scattering in an inhomogeneous medium: a new probe of the homogeneous linewidth,” Phys. Rev. Lett. 49, 930 (1982).CrossRefGoogle Scholar
  48. 42.
    J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delo-calized 2D excitons in GaAs-AlxGa1-xAs multiple quantum well structures,” Phys. Rev. B 30, 7346 (1984). Note that the absorption scale for the 102-Å sample (Fig. 1 of this reference) should be multiplied by a factor of 1.8 (see Erratum. Phys. Rev. B, to be published).Google Scholar
  49. 43.
    Resonant Rayleigh scattering is a linear process and is not to be confused with resonant Rayleigh-type mixing [T. Yajima and H. Souma, “Study of ultra-fast relaxation processes by resonant Rayleigh-type mixing,” Phys. Rev. B 17, 309 (1978)], which is a nonlinear four-wave mixing process closely related to the transient-grating technique.Google Scholar
  50. 44.
    N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in NMR absorption,” Phys. Rev. 73, 679 (1948)CrossRefGoogle Scholar
  51. M. L. Spaeth and W. R. Sooy, “Fluorescence and bleaching of organic dyes,” J. Chem. Phys. 48, 2315 (1968)CrossRefGoogle Scholar
  52. P. M. Selzer, “General techniques and experimental methods,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer. eds. (Springer-Verlag, Berlin, 1981), Chap. 4.Google Scholar
  53. 45.
    R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584 (1970)CrossRefGoogle Scholar
  54. R. L. Fork, C. V. Shank, C. Hirliman, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1 (1983).CrossRefGoogle Scholar
  55. 46.
    J. Hegarty and M. D. Sturge, “Exciton hole-burning in GaAs-AlGaAs multi-quantum wells,” in Proceedings of the International Conference on Luminescence, W. M. Yen and J. C. Wright, eds. (North-Holland, Amsterdam, 1984), p. 494.Google Scholar
  56. 47.
    N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53, 2433 (1984).CrossRefGoogle Scholar
  57. 48.
    W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank. A. C. Gossard. and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984).Google Scholar
  58. 49.
    J. Hegarty. “Effect of hole burning on pulse propagation in GaAs quantum wells,” Phys. Rev. B 25, 4324 (1982).Google Scholar
  59. 50.
    J. M. Ziman. Models of Disorder (Cambridge U. Press, Cambridge, 1979), p. 484.Google Scholar
  60. 51.
    D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconducter quantum-well structures,” J. Opt Soc. Am. B. 2, 1173–1175 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. Hegarty
    • 1
  • M. D. Sturge
    • 2
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.Bell Communications ResearchMurray HillUSA

Personalised recommendations