Skip to main content

Spontaneous Emission Control in Semiconductor Microcavities

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

Albert Einstein was the first to realize that stimulated emission and spontaneous emission goes hand in hand. In his famous 1917 paper 1, he showed that his A and B coefficients are intimately coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, Zur Quantentheorie der Strahlung, Z. Phys., 18, 121 (1917).

    Google Scholar 

  2. E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev., 69, 681 (1946)

    Article  Google Scholar 

  3. H. Casimir and D. Polder, The influence of retardation on the London-van der Waals forces, Phys. Rev., 73, 360 (1948).

    Article  MATH  Google Scholar 

  4. E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE, 51, 89 (1963).

    Article  Google Scholar 

  5. D. Kleppner, Inhibited spontaneous emission, Phys. Rev. Lett, 47, 233 (1981).

    Article  Google Scholar 

  6. P. Goy, J. M. Raimond, M. Gross and S. Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett., 50, 1903 (1983).

    Article  Google Scholar 

  7. R. G. Hulet, E. S. Hilfer and D. Kleppner, Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett, 55, 2137 (1985).

    Article  Google Scholar 

  8. G. Gabrielse and H. Dehmelt, Observation of inhibited spontaneous emission, Phys. Rev. Lett, 55, 67 (1985).

    Article  Google Scholar 

  9. W. Jhe et al., Suppression of spontaneous decay at optical frequencies: Test of vacuumfield anisotropy in confined space, Phys. Rev. Lett., 58, 666 (1987).

    Article  Google Scholar 

  10. F. DeMartini, G. Innocenti, G. R. Jacobovitz and P. Mataloni, Anomalous spontaneous emission time in a microscopic optical cavity, Phys. Rev. Lett., 59, 2955 (1987).

    Article  Google Scholar 

  11. D. Heinzen, J. J. Childs, J. E. Thomas and M. S. Feld, Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator, Phys. Rev. Lett., 58, 1320 (1987).

    Article  Google Scholar 

  12. D. Heinzen and M. S. Feld, Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator, Phys. Rev. Lett., 59, 2623 (1987).

    Article  Google Scholar 

  13. M. G. Raizen, R. J. Thomason, R. J. Brecha, H. J. Kimble and H. J. Carmichael, Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity, Phys. Rev. Lett, 63, 240 (1989).

    Article  Google Scholar 

  14. K. H. Drexhage, Interaction of light with monomolecular dye layers, in: “Progress in Optics, vol. 12”, ed. E. Wolf, North Holland, New York (1974).

    Google Scholar 

  15. T. J. Rogers, D. G. Deppe and B. G. Streetman, Effect of an AlAs/GaAs mirror on the spontaneous emission of an InGaAs-GaAs quantum well, Appl. Phys. Lett, 57, 1858 (1990).

    Article  Google Scholar 

  16. Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta and G. Björk, Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity, Opt Comm., 80, 337 (1991).

    Article  Google Scholar 

  17. T. Yamauchi, Y. Arakawa and M. Nishioka, Enhanced and inhibited spontaneous emission in GaAs/AlGaAs vertical microcavity lasers with two kinds of quantum wells, Appl. Phys. Lett, 58, 2339 (1991).

    Article  Google Scholar 

  18. K-H. Lin and W-F. Hsieh, Transient response of a thresholdless microdroplet dye laser, Opt. Lett, 16, 1608 (1991).

    Article  Google Scholar 

  19. N. Ochi et al., Controllable enhancement of excitonic spontaneous emission by quantum confined stark effect in GaAs quantum wells embedded in quantum microcavities, Appl. Phys. Lett, 58, 2735 (1991).

    Article  Google Scholar 

  20. M. Suzuki, H. Yokoyama, S. D. Brorson and E. P. Ippen, Observation of spontaneous emission lifetime change of dye-containing Langmuir-Blodgett films in optical microcavities, Appl. Phys. Lett, 58, 998 (1991).

    Article  Google Scholar 

  21. H. Yokoyama, M. Suzuki and Y. Nambu, Spontaneous emission and laser oscillation properties of microcavities containing a dye solution, Appl. Phys. Lett., 58, 2598 (1991).

    Article  Google Scholar 

  22. C. Lei, T. J. Rogers, D. P. Deppe and B. G. Streetman, InGaAs-GaAs quantum well vertical-cavity surface-emitting laser using molecular beam epitaxial regrowth, Appl. Phys. Lett 58, 1122 (1991).

    Article  Google Scholar 

  23. R. J. Horowicz, H. Heitmann, Y. Kadota and Y. Yamamoto, GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode, Appl. Phys. Lett, 61, 393 (1992).

    Article  Google Scholar 

  24. H. B. Lin et al., Cavity modified spontaneous-emission rates in liquid microdroplets, Phys. Rev. A, 45, 6756 (1992).

    Article  Google Scholar 

  25. D. L. Huffaker et al., Controlled spontaneous emission in room-temperature semiconductor microcavities, Appl. Phys. Lett, 60, 3203 (1992).

    Article  Google Scholar 

  26. S. L. McCall et al., Whispering-gallery mode microdisc lasers, Appl. Phys. Lett., 60, 289 (1992).

    Article  Google Scholar 

  27. A. F. Levi et al., Room temperature operation of microdisc lasers with submilliamp threshold current, Electron. Lett, 28, 1010 (1992).

    Article  Google Scholar 

  28. E. F. Shubert et al., Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities, Appl. Phys Lett, 61, 1381 (1992).

    Article  Google Scholar 

  29. N. E. Hunt, E. F. Schubert, R. A. Logan and G. J. Zydzik, Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light-emitting diode, Appl. Phys Lett, 61, 2287 (1992).

    Article  Google Scholar 

  30. C. Weisbuch, M. Nishioka, A. Ishikawa and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett, 69, 3314 (1992).

    Article  Google Scholar 

  31. H. Heitmann, Y. Kadota, T. Kawakami, and Y. Yamamoto, Single transverse mode microcavity laser with ultralow-threshold, submitted to Jap. J. App. Phys., 32, L1141 (1993).

    Article  Google Scholar 

  32. F. M. Matinaga et al., Low threshold operation of hemispherical microcavity singlequantum-well lasers at 4 K, Appl. Phys. Lett, 62, 443 (1993)

    Article  Google Scholar 

  33. F. DeMartini et al., Spontaneous and stimulated emission in the thresholdless microlaser, J. Opt. Soc. Am. B, 10, 360 (1993).

    Article  Google Scholar 

  34. S. T. Ho, S. L. McCall and R. E. Slusher, Spontaneous emission from excitons in thin dielectric layers, Opt. Lett, 18, 909 (1993).

    Article  Google Scholar 

  35. X. Wang, R. A. Linke, G. Devlin and H. Yokoyama, Lasing threshold behaviour of microcavities: Observation by polarization and spectroscopic measurements, Phys. Rev. A, 47, R24488 (1993).

    Google Scholar 

  36. S. Haroche and D. Kleppner, Cavity quantum electrodynamics, Physics Today, 42, 24 (1989).

    Article  Google Scholar 

  37. E. Corcoran, Diminishing dimensions, Scientific American, 263, 122 (November 1990).

    Article  Google Scholar 

  38. J. L. Jewell, J. P. Harbison and A. Scherer, Microlasers, Scientific American, 265, 56 (November 1991).

    Google Scholar 

  39. J. L. Jewell, G. R. Olbright, R. P. Bryan and A. Scherer, Surface-emitting lasers break the resistance barrier, Photonics Spectra, 26, 126 (November 1992).

    Google Scholar 

  40. S. E. Morin, Q. Wu and T. W. Mossberg, Cavity quantum electrodynamics at optical frequencies, Opt & Photon. News, 3, 8 (August 1992).

    Article  Google Scholar 

  41. S. Haroche and J. M. Raimond, Cavity quantum electrodynamics. Scientific American. 268 26 (April 1993).

    Article  Google Scholar 

  42. R. E. Slusher, Semiconductor microlasers and their applications, Opt. & Photon. News, 4, 8 (February 1993).

    Article  Google Scholar 

  43. Y. Yamamoto and R. E. Slusher, Optical processes in microcavities, Physics Today, 46, 66 (June 1993).

    Article  Google Scholar 

  44. P. Meystre, Cavity QED, in: “Nonlinear Optics in Solids, Springer Series in Wave Phenomena, Vol. 9”, ed. O. Keller, Springer, Berlin (1990).

    Google Scholar 

  45. E. A. Hinds, Cavity quantum electrodynamics, in: “Adv. At. Mol. and Opt. Phys.”, eds. D. Bates and B. Bederson, 28, 237 (1991).

    Google Scholar 

  46. J. L. Jewell et al., Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization, IEEE J. Quant. Electron., 27, 1332 (1991).

    Article  Google Scholar 

  47. Y. Yamamoto, S. Machida and G. Björk, Micro-cavity semiconductor lasers with controlled spontaneous emission, Opt. and Quant. Electron., 24, S215 (1992).

    Article  Google Scholar 

  48. H. Yokoyama et al., Controlling spontaneous emission and thresholdless laser oscillation with optical microcavities, Opt. and Quant. Electron., 24, S245 (1992).

    Article  Google Scholar 

  49. E. Yablonovitch et al., 3-Dimensional photonic bandgap structure, Opt. and Quantum Electron., 24, S276 (1992).

    Article  Google Scholar 

  50. S. Haroche, Cavity quantum electrodynamics, in: “Fundamental Systems in Quantum Optics”, ed. J. Dalibard, J. M. Raimond and J. Zinn-Justin, Elsevier Science Publishers B.V., Amsterdam (1992).

    Google Scholar 

  51. T. Kobayashi, T. Segawa, Y. Morimoto and T. Sueta, (in Japanese), presented at the 46th Fall meet. Japan Appl. Phys. Soc, 1982, paper 29a-B-6.

    Google Scholar 

  52. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett, 58, 2059 (1987).

    Article  Google Scholar 

  53. F. DeMartini and G. R. Jacobovitz, Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity, Phys. Rev. Lett, 60, 1711 (1988).

    Article  Google Scholar 

  54. H. Yokoyama and S. D. Brorson, Rate equation analysis of microcavity lasers, J. Appl. Phys., 66, 4801 (1989).

    Article  Google Scholar 

  55. G. Björk and Y. Yamamoto, Analysis of semiconductor microcavity lasers using rate equations, IEEE J. Quantum Electron., 27, 2386 (1991).

    Article  Google Scholar 

  56. Y. Yamamoto and G. Björk, Lasers without inversion in Microcavities, Jap. J. Appl. Phys., 30, 2039 (1991).

    Article  Google Scholar 

  57. G. P. Agrawal and G. R. Gray, Intensity and phase noise in microcavity surfaceemitting semiconductor lasers, Appl. Phys. Lett., 59, 399 (1991).

    Article  Google Scholar 

  58. G. Björk, A. Karlsson and Y. Yamamoto, On the linewidth of microcavity lasers, Appl. Phys. Lett, 60, 304 (1992).

    Article  Google Scholar 

  59. M. Yamanishi, Y. Yamamoto and T. Shiotani, A novel modulation scheme in semiconductor light emitters with quantum microcavities: High speed intensity modulation by switching of coupling efficiency of spontaneous emission, IEEE Photon. TechnoL Lett., 3, 888 (1991).

    Article  Google Scholar 

  60. R. J. Cook and P. W. Milonni, Quantum theory of an atom near partially reflecting walls, Phys. Rev. A, 35, 5081 (1987)

    Article  Google Scholar 

  61. G. S. Agarwal, Finite boundary effects in quantum electrodynamics, in: “Quantum Electrodynamics and Quantum Optics”, ed. A. O. Barut, Plenum, New York (1984).

    Google Scholar 

  62. P. Stehle, Atomic radiation in a cavity, Phys. Rev. A, 2, 102 (1970).

    Article  Google Scholar 

  63. P. W. Milonni and P. L. Knight, Spontaneous emission between mirrors, Optics Comm., 9, 119 (1973).

    Article  Google Scholar 

  64. J. P. Dowling, M. O. Scully and F. DeMartini, Radiation pattern of a classical dipole in a cavity, Optics Comm. 82, 415 (1991).

    Article  Google Scholar 

  65. J. P. Dowling, Spontaneous emission in cavities: How much more classical can you get?, in: “Foundations of Physics, Vol. 28”, Plenum, New York (1993).

    Google Scholar 

  66. S. Haroche, Spontaneous emission in confined space, in: “Lecture notes in Physics”, Vol. 282 — Fundamentals of Quantum Optics IF, ed. F. Ehlotzky, Springer-Verlag, Berlin (1987).

    Google Scholar 

  67. S. D. Brorson, H. Yokoyama, and E. Ippen, Spontaneous emission rate alteration in optical waveguide structures, IEEE J. Quant. Electron., 26, 1492 (1990).

    Article  Google Scholar 

  68. A. Kastler, Atomes à l’intérieur d’un interféromètre Perot-Fabry, Appl. Optics, 1, 17 (1962).

    Article  Google Scholar 

  69. G. Barton, Quantum electrodynamics of spinless particles between conducting plates, Proc. Roy. Soc. Lond. A., 320, 251 (1970).

    Article  Google Scholar 

  70. M. R. Philpott, Fluorescence from molecules between mirrors, Chem. Phys. Lett., 19, 435 (1973).

    Article  Google Scholar 

  71. X-P. Feng, Theory of a short optical cavity with dielectric multilayer film mirrors, Opt. Comm., 83, 162 (1991).

    Article  Google Scholar 

  72. X-P. Feng and K. Ujihara, Quantum theory of spontaneous emission in a onedimensional optical cavity with two-sided output coupling, Phys. Rev. A, 41, 2668 (1991).

    Article  Google Scholar 

  73. F. DeMartini et al., Spontaneous emission in the optical microscopic cavity, Phys. Rev. A, 43, 2480 (1991).

    Article  Google Scholar 

  74. G. Björk, Y. Yamamoto, S. Machida, and K. Igeta, Modification of spontaneous emission rate in planar dielectric microcavity structures, Phys. Rev. A, 44, 669 (1991).

    Article  Google Scholar 

  75. D. G. Deppe and C. Lei, Spontaneous emission from a dipole in a semiconductor microcavity, J. Appl. Phys., 70, 3443 (1991).

    Article  Google Scholar 

  76. K. Ujihara, Spontaneous emission and the concept of effective area in a very short cavity with plane-parrallel dielectric mirrors, Jpn. J. Appl Phys., 30, L901 (1991).

    Article  Google Scholar 

  77. Y. Yamamoto, S. Machida, K. Igeta, and G. Björk, Controlled spontaneous emission in microcavity semiconductor lasers, in: “Coherence, Amplification, and Quantum Effects in Semiconductor Lasers”, ed. Y. Yamamoto, John Wiley & Sons, New York (1991).

    Google Scholar 

  78. G. Björk, H. Heitmann, and Y. Yamamoto, Spontaneous emission coupling factor and mode characteristics of planar dielectric microcavity lasers, Phys. Rev. A, 47, 4451 (1993)

    Article  Google Scholar 

  79. P. Meystre and M. Sargent III, “Elements of Quantum Optics”, Springer-Verlag, Berlin (1991)

    Google Scholar 

  80. C. Lei, D. G. Deppe, Z. Huang, and C. C. Lin, Emission characteristics from dipoles with fixed positions in Fabry-Perot cavities, IEE Quantum Electron., 29, 1383 (1993)

    Article  Google Scholar 

  81. F. DeMartini, M. Marrocco and D. Murra, Transverse correlations in the active microscopic cavity, Phys. Rev. Lett, 65, 1853 (1990).

    Article  Google Scholar 

  82. H. Kogelnik and C. V. Shank, Coupled wave theory of distributed feedback lasers, J. Appl. Phys., 43, 2327 (1972).

    Article  Google Scholar 

  83. H. Haus and C. V. Shank, Antisymmetric taper of distributed feedback lasers, IEEE J. Quantum. Electron., QE-12, 532 (1976).

    Article  Google Scholar 

  84. A. Yariv, “Quantum Electronics, 3rd edition”, chapter 22.5, John Wiley & Sons, New York (1989).

    Google Scholar 

  85. S. T. Ho et al., High index contrast mirrors for optical microcavities, Appl. Phys. Lett., 57, 1387 (1990).

    Article  Google Scholar 

  86. T. Baba, T. Hamano, F. Koyama and K. Iga, Spontaneous emission factor of a microcavity DBR surface emitting laser, IEEE J. Quant. Electron., 27, 1347 (1991).

    Article  Google Scholar 

  87. T. Baba, T. Hamano, F. Koyama and K. Iga, Spontaneous emission factor of a microcavity DBR surface emitting laser (II) — Effects of electron quantum confinement, IEEE J. Quantum Electron., 27, pp. 1310 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björk, G., Yamamoto, Y., Heitmann, H. (1995). Spontaneous Emission Control in Semiconductor Microcavities. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics