Advertisement

Prospects of High-Efficiency Quantum Boxes Obtained by Direct Epitaxial Growth

  • Jean-Michel Gérard
Part of the NATO ASI Series book series (NSSB, volume 340)

Abstract

The production of arrays of semiconductor quantum wires (QWW) or boxes (QB) in a single epitaxial step is obviously very challenging. Besides possibly simplifying the fabrication procedure with respect to standard approaches based on the processing of a quantum well (QW) structure, direct epitaxial growth is the cleanest fabrication process one can imagine to produce low dimensionality microstructures. Such an approach generally allows to avoid the generation of extrinsic defects during the process and the resulting drastic reduction of the photoluminescence (PL) yield often observed for small QBs and QWWs1–5. Fundamental issues concerning intrinsic properties of QBs and QWWs can be adressed experimentally, such as the nature and efficiency of capture and energy relaxation mechanisms in such microstructures. Direct growth of QWW has been reported for a large variety of naturally (vicinal surfaces6,7, supersteps8, faceted high index surfaces 9) or artificially patterned substrates (V-grooves 10–12, masked surfaces for selective localized growth 12–14, sidewalls of a cleaved heterostructure 15). For QBs, the single convincing technique reported until now is localized growth on SiO2 masked GaAs surfaces 14,16,17. However, the prerequisite of an ultrafine lithographic definition of the mask reduces somewhat the interest of the direct growth there.

Keywords

Quantum Well Reflection High Energy Electron Diffraction Atomic Force Micro Reflection High Energy Electron Diffraction Pattern Size Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. E. Maile, A. Forschet and R. Germann, Impact of sidewall recombination on the quantum efficiency of dry etched InGaAs/InP semiconductor quantum wires, Appl. Phys. Lett. 54, 1552 (1989)CrossRefGoogle Scholar
  2. 2.
    E.M. Clausen, H.G. Craighead, J.M. Worlock, J.P. Harbison, L.M. Schiavone, L. Florez and B. Van der Gaag, Determination of non-radiative surface layer thickness in quantum dots etched from single quantum well GaAs/GaAlAs, Appl. Phys. Lett. 55, 1427 (1989)CrossRefGoogle Scholar
  3. 3.
    H.E.G. Arnot, M. Watt, C.M. Sotomayor-Torrès, R. Glew, R. Cisco, J. Bates and S.P. Beaumont, Photoluminescence of overgrown GaAs/GaAlAs quantum dots, Superlattices Microstruct. 5, 459 (1989)CrossRefGoogle Scholar
  4. 4.
    M. Kohl, D. Heitmann, P. Grambow and K. Ploog, Phys. Rev. Lett. 63, 2124 (1989)CrossRefGoogle Scholar
  5. 5.
    A. Izraël, B. Sermage, J.Y. Marzin, A. Ougazzaden, R. Azoulay, J. Etrillard, V. Thierry-Mieg and L. Henry, Microfabrication and optical study of reactive ion etched InGaAsP/InP and GaAs/GaAlAs quantum wires, Appl. Phys. Lett. 56, 830 (1990)CrossRefGoogle Scholar
  6. 6.
    J.M. Gaines, P.M. Petroff, H. Kroemer, R.J. Simes, R.S. Geels and J.H. English, Molecular-beam epitaxy growth of tilted GaAs/AlAs superlattices by deposition of fractional monolayers on vicinal (001) substrates, J. Vac. Sci. Technol. B6, 1378 (1988)Google Scholar
  7. 7.
    M. Tanaka and H. Sakaki, Formation of a planar superlattice states in new grid-inserted quantum well structures, Appl. Phys. Lett. 54, 1326 (1989)CrossRefGoogle Scholar
  8. 8.
    E. Colas, E. Kapon, S. Simhony, H.M. Cox, R. Bhat, K. Kash and P.S.D. Lin, Generation of macroscopic steps on patterned (001) vicinal GaAs surfaces, Appl. Phys. Lett. 55, 867 (1989)CrossRefGoogle Scholar
  9. 9.
    R. Nötzel, N.N. Leventsov, L. Däweritz and K. Ploog, Semiconductor quantum wires directly grown on high-index surfaces, Phys. Rev. B 45, 3507 (1992)CrossRefGoogle Scholar
  10. 10.
    E. Kapon, D.M. Whang and R. Bhat, Stimulated emission in semiconductor quantum wire heterostructures, Phys. Rev. Lett. 63, 430 (1989)CrossRefGoogle Scholar
  11. 11.
    E. Kapon, D.W. Wang, M. Walther, R. Bhat and N.G. Stoffel, Two-dimensional quantum confinement in multiple quantum wire lasers grown by OMCVD on V-grooved substrates, Surf. Sci. 267, 593 (1988)CrossRefGoogle Scholar
  12. 12.
    S. Tsukamoto, Y. Nagamune, M. Nishioka and Y. Arakawa, Fabrication of GaAs quantum wires on epitaxially grown V grooves by metal-organic chemical-vapor deposition, J. Appl. Phys. 71, 533 (1992)CrossRefGoogle Scholar
  13. 13.
    S. Tsukamoto, Y. Nagamune, M. Nishioka and Y. Arakawa, Fabrication of arrowhead-shaped quantum wires by metalorganic chemical vapor deposition selective growth. Appl. Phys. Lett. 62, 49 (1993)CrossRefGoogle Scholar
  14. 14.
    J.A. Lebens, C.S. Tsai, K.J. Vahala and T.F. Kuech, Application of selective epitaxy to fabrication of nanometer scale wire and dots structures, Appl.Phys. Lett. 56, 2642 (1990)CrossRefGoogle Scholar
  15. 15.
    A.R. Goni, L. N. Pfeiffer, K.W. West, A. Pinczuk, H. A. Baranger and L. H. Störnier, Observation of quantum wire formation at intersecting quantum wells, Appl. Phys. Lett. 61, 1956 (1992)CrossRefGoogle Scholar
  16. 16.
    T. Fukui, S. Ando, T. Tokura and T. Toriyama, GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition, Appl. Phys. Lett. 58, 2018 (1991)CrossRefGoogle Scholar
  17. 17.
    Y. Arakawa, in this volumeGoogle Scholar
  18. 18.
    L. Goldstein, F. Glas, J.Y. Marzin, M.N. Charasse and G. Le Roux, Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices, Appl. Phys. Lett. 47, 1099 (1985)CrossRefGoogle Scholar
  19. 19.
    F.J. Grunthaner, M.Y. Yen, R. Fernandez, T.C. Lee, A. Madhukar and B.F. Lewis, Molecular beam epitaxy growth and transmission electron microscopy studies of thin GaAs/InAs (100) multiple quantum well structures, Appl. Phys. Lett. 46, 983 (1985)CrossRefGoogle Scholar
  20. 20.
    F. Houzay, C. Guille, J.M. Moison, P. Hénoc and F. Barthe, First stages of the MBE growth of InAs on (001) GaAs, J. Crystal Growth 81, 67 (1987)CrossRefGoogle Scholar
  21. 21.
    P.R. Berger, K. Chang, P.K. Battacharya and J. Singh, A study of strain-related effects in the molecular beam epitaxy growth of InGaAs on GaAs using reflection high-energy electron diffraction, J. Vac. Sci. Technol. B5, 1162 (1987)Google Scholar
  22. 22.
    J.M. Gérard, Highly strained InAs/GaAs short period superlattices, in “Condensed Systems of Low Dimensionality” J.L. Beeby ed, NATO ASI Series B253, Plenum, New York (1991)Google Scholar
  23. 23.
    D.B. Fermer, D.K. Biegelsen, B.S. Krusor, F.A. Ponce, J.C. Tramontana, Very thin 2D GaAs films on Si during the early stages of the growth by MBE, Proceedings of the Atomic Scale Structure of Interface Symposium p15–20, Mat Res. Soc, Pittsburgh (1990)Google Scholar
  24. 24.
    Y.M. Mo, D.E. Savage, B.S. Schwarzentruber and M.G. Legally, Kinetic pathway in Stranski-Krastanov growth of Ge on Si (001), Phys. Rev. Lett 65, 1020 (1990)CrossRefGoogle Scholar
  25. 25.
    D.J. Eaglesham and M. Cerullo, Dislocation-free Stranski-Krastanov growth of Ge on Si (100), Phys. Rev. Lett. 64, 1943 (1993)CrossRefGoogle Scholar
  26. 26.
    J.M. Gérard and J.Y. Marzin, High quality ultrathin InAs/GaAs quantum wells grown by standard and by low-temperature modulated-fluxes molecular beam epitaxy, Appl. Phys. Lett. 53, 568 (1988)CrossRefGoogle Scholar
  27. 27.
    J.Y. Marzin and J.M. Gérard, Optical properties of some III-V strained-layer superlattices, Superl. and Microstr. 5, 51(1989)CrossRefGoogle Scholar
  28. 28.
    J.M. Gérard, High resolution in situ measurement of the surface composition of InGaAs and InAlAs at growth temperature, J. Crystal Growth 127, 981 (1993)CrossRefGoogle Scholar
  29. 29.
    J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. André and O. Vatel, Self-organized growth of regular nanometer scale InAs dots on GaAs, Appl. Phys. Lett. 64, 196 (1994)CrossRefGoogle Scholar
  30. 30.
    F. Glas, C. Guille, P. Hénoc and F. Houzay, TEM study of the molecular beam epitaxy island growth of InAs on GaAs, Inst. Phys. Conf. Ser. No 87 section 2, 71 (1987)Google Scholar
  31. 31.
    J.M. Moison, C. Guille, F. Houzay, F. Barthe and M. Van Rompay, Surface segregation of third-column atoms in group III-V arsenide compounds: ternary alloys and heterostructures, Phys. Rev. B 40, 6149 (1989) and references therein.CrossRefGoogle Scholar
  32. 32.
    J.M. Gérard and J.Y. Marzin, Monolayer-scale optical investigation of segregation effects in semiconductor heterostructures, Phys. Rev. B 45, 6313 (1992)CrossRefGoogle Scholar
  33. 33.
    O. Brandt, L. Tapfer, R. Cingolani, K. Ploog, M. Hohenstein and F. Phillipp, Structural and optical properties of (001) InAs single-monolayer quantum wells in bulklike GaAs grown by molecular beam epitaxy, Phys. Rev. B 41, 12599 (1990)CrossRefGoogle Scholar
  34. 34.
    J.M. Gérard, PhD thesis, Université Paris VI (1990)Google Scholar
  35. 35.
    J.Y. Marzin, unpublishedGoogle Scholar
  36. 36.
    J. Sujidono, M.D. Johnson, C.W. Snyder, M.B. Elowitz and B.G. Orr, Surface evolution during molecular beam epitaxy deposition of GaAs, Phys. Rev. Lett. 69, 2811 (1992)CrossRefGoogle Scholar
  37. 37.
    A. Izraël, B. Sermage, J.Y. Marzin, A. Ougazzaden, R. Azoulay, J. Etrillard, V. Thierry-Mieg and L. Henry, Fabrication and luminescence of narrow reactive ion etched InGaAs/InP and GaAs/GaAlAs quantum wires, Jap. J. Appl. Phys. 30, 3256 (1991)CrossRefGoogle Scholar
  38. 38.
    W. Hornischer, P. Grambow, T. Demel, E. Bauser, D. Heitmann, K. Von Klitzing and K. Ploog, Quantum wires prepared by liquid-phase epitaxial overgrowth of dry-etched AlGaAs-GaAs heterostructures, Appl. Phys. Lett. 60, 2998 (1992)CrossRefGoogle Scholar
  39. 39.
    G. Lehr, R. Bergmann, R. Rudeloff, F. Scholz and H. Schweizer, Influence of carrier capture on the quantum efficiency of as-etched and epitaxially buried InGaAs/InP quantum wires, Appl. Phys. Lett. 61, 517 (1992)CrossRefGoogle Scholar
  40. 40.
    J.Y. Marzin, A. Izraël and L. Birotheau, Optical properties of etched GaAs/GaAlAs quantum wires and dots, Proceedings of the MSS6 conference (Garmisch-Partenkirchen, august 1993), to be published in Solid State ElectronicsGoogle Scholar
  41. 41.
    C. Gréus, A. Forschel, J. Straka, K. Pieger and M. Emmerling, InGaAs/GaAs quantum wires defined by lateral top barrier modulation, Appl. Phys. Lett. 61, 1199 (1992)CrossRefGoogle Scholar
  42. 42.
    A. Schmeller, A.R. Goni, A. Pinczuk, J.S. Weiner, J.M. Calleja, B.S. Dennis, L.N. Pfeiffer and K.W. West, Inelastic light scattering by electrons in GaAs quantum wires: spin density, charge density and singleparticle excitations, Proceedings of the MSS6 conference (Schwäbisch-Gmünd, august 1993), to be published in Solid State ElectronicsGoogle Scholar
  43. 43.
    B. Sermage, F. Alexandre, J. Beerens and P. Tronc, Radiative and non-radiative recombination in GaAs/GaAlAs quantum wells, Superlattices Microstruct. 6, 373 (1989)CrossRefGoogle Scholar
  44. 44.
    U. Bockelmann and G. Bastard, Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases, Phys. Rev. B 42, 8947 (1990)CrossRefGoogle Scholar
  45. 45.
    H. Benisty, C.M. Sotomayor-Torrès and C. Weisbuch, Intrinsic mechanism for the poor luminescence properties of quantum-box systems, Phys. Rev. B 44, 10945 (1991)CrossRefGoogle Scholar
  46. 46.
    T. Inoshita and H. Sakaki, Electron relaxation in a quantum dot: significance of multiphonon processes, 46, 7260 (1992)Google Scholar
  47. 47.
    K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle and G. Weimann, Photoluminescence of a single GaAs/GaAlAs quantum dot, Phys. Rev. Lett. 69, 3216 (1992)CrossRefGoogle Scholar
  48. 48.
    U. Bockelmann, Inelastic scattering and thermalization in low dimensional III-V semiconductor structures, in this volume.Google Scholar
  49. 49.
    R. Ferreira and G. Bastard, Evaluation of some scattering times for electrons in unbiased and biased single and multiple quantum well structures, Phys. Rev. B. 40, 1074 (1989)CrossRefGoogle Scholar
  50. 50.
    B. Jusserand and J.M. Gérard, Superlattice and disorder effects on vibrations in InAs/GaAs superlattices: a Raman scattering study, Proceedings of the 19th Int. Conf. Phys. Semicon. 799, Institute of Physics — Polish Academy of Science, Varsaw (1988)Google Scholar
  51. 51.
    M. Watt, C.M. Sotomayor-Torrès, R. Cheung, C.D.W. Wilkinson, H.E.G. Arnot and S.P. Beaumont, Raman scattering investigations of the damage caused by reactive-ion etching of GaAs, Superlattices Microstruct. 4, 243 (1989)CrossRefGoogle Scholar
  52. 52.
    J.J. Hopfleid, D.G. Thomas and R.T. Lynch, Isoelectronic donors and acceptors, Phys. Rev. Lett. 17, 312 (1966)CrossRefGoogle Scholar
  53. 53.
    P.J. Dean, A. M. White, E. W. Williams and M.G. Astles, The isoelectronic trap bismuth in indium phosphide, Solid State Com. 9, 1555 (1971)CrossRefGoogle Scholar
  54. 54.
    W. Rühle, W. Schmid, R. Meck, N. Stath, J.U. Fishbach, I. Strottner, K. W. Benz and M. Pilkhun, Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi, Phys. Rev. B 18, 7022 (1978)CrossRefGoogle Scholar
  55. 55.
    U. Bockelmann and T. Egeler, Electron relaxation in quantum dots by means of Auger processes, Phys. Rev. B 46, 15574(1992)CrossRefGoogle Scholar
  56. 56.
    C. Weisbuch, in “Applications of Multiquantum Wells, Selective Doping and Superlattices”, Semiconductors and Semimetals vol.24, R. Dingle editor, Academic Press, Boston, 1 (1987)Google Scholar
  57. 57.
    Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and temperature dependance of its threshold, Appl. Phys. Lett. 40, 939 (1982)CrossRefGoogle Scholar
  58. 58.
    M. Asada, Y. Myamoto and Y. Suematsu, Theoretical gain of quantum well wire lasers, Jap. J. Appl. Phys. 24, L95 (1985)CrossRefGoogle Scholar
  59. 59.
    M. Asada, Y. Myamoto and Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers, IEEE J. Quantum Electron. QE-22, 1915 (1986)CrossRefGoogle Scholar
  60. 60.
    Y. Arakawa and A. Yariv, Quantum well structures: gain, spectra, dynamics, IEEE J. Quantum Electron., Appl. Phys. Lett. 45, 950 (1984)CrossRefGoogle Scholar
  61. 61.
    C. Weisbuch and J. Nagle, On the impact of low dimensionality in quantum well, wire and dot semiconductor lasers, in “Science and Engineering of 1 and 0 Dimensional Semiconductor Systems” C.M. Sotomayor-Torrès and S.P. Beaumont eds., NATO ASI Series B 214, p 319, Plenum, New York, 1990.Google Scholar
  62. 62.
    L. Birotheau, A. Izraël, J.Y. Marzin, R. Azoulay, V. Thierry-Mieg and F.R. Ladan, Optical investigation of the one-dimensional confinement effects in narrow GaAs/GaAlAs quantum wires, Appl. Phys. Lett. 61, 3023 (1992)CrossRefGoogle Scholar
  63. 63.
    A. Schmidt, A. Forschel, F. Faller, I. Itskevitch and A. Vassiliev, Optical characterisation of InGaAs/GaAs quantum dots defined by lateral top barrier modulation. Proceedings of the MSS6 conference (Schwäbisch-Gmünd, august 1993), to be published in Solid State Electronics.Google Scholar
  64. 64.
    H. Sakaki, K. Kato and H. Yoshimura, Optical absorption and carrier-induced bleaching effect in quantum wire and quantum box structures, Appl. Phys. Lett. 57, 2800 (1990)CrossRefGoogle Scholar
  65. 65.
    H. Benisty and C. Weisbuch, The reduced electron-phonon relaxation rates in quantum-box systems: II Comparison with experiments and applications to new structures, to be published in Phys. Rev. B.Google Scholar
  66. 66.
    See e.g. “Intersubband Transitions in Quantum Wells”, E. Rosencher, B. Vinter and B.F. Levine eds, Plenum, London (1992)Google Scholar
  67. 67.
    J.M. Gérard and C. Weisbuch, structure à semiconducteurs pour composant optoélectronique, trench patent no9000229 (1990)Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jean-Michel Gérard
    • 1
  1. 1.Laboratoire de BagneuxFRANCE TELECOM/CNETBagneuxFrance

Personalised recommendations