Advertisement

Current Concepts of the Plasma Lipoproteins and Their Role in Atherosclerosis

  • H. Bryan BrewerJr.
Chapter
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

During the last two decades there have been major advances in our understanding of the role of the plasma lipoproteins, apolipoproteins, lipolytic enzymes, and lipoprotein receptors in cholesterol and lipoprotein metabolism. This new information has provided major insights into the role of cholesterol and lipoproteins in the pathogenesis of premature atherosclerosis. This report will briefly review our current concepts of lipoprotein metabolism and the role of the atherogenic and antiatherogenic plasma lipoproteins in the development of premature cardiovascular disease.

Keywords

Atherosclerosis Apolipoproteins Dyslipoproteinemias 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brewer HB, Jr, Gregg RE, Hoeg JM, and Fojo SS. Apolipoproteins and lipoproteins in human plasma: an overview. Clin. Chem. 1988:34; pp.4–8.Google Scholar
  2. 2.
    Brewer HB, Jr, Gregg RE, and Hoeg JM. Apolipoproteins, lipoproteins, and atherosclerosis. In: Apolipoproteins, lipoproteins, and atherosclerosis.. Braunwald E ed. W.B. Saunders, Co., New York 1989:3; pp. 121–144.Google Scholar
  3. 3.
    Vega GL, Denke MA, and Grundy SM. Metabolic basis of primary hypercholesterolemia. Circulation. 1991:84; pp.118–128.PubMedCrossRefGoogle Scholar
  4. 4.
    Schaefer EJ. Diagnosis and management of lipoprotein disorders. In: Diagnosis and management of lipoprotein disorders. Rifkind BM ed. Marcel Dekker, Inc., New York 1991: pp. 17–52.Google Scholar
  5. 5.
    Sudhof TC, Goldstein JL, Brown MS, and Russell DW. The LDL receptor gene: a mosiac of exons shared with different proteins. Science. 1985:228; pp.815PubMedCrossRefGoogle Scholar
  6. 6.
    Yamamoto T, Davis CG, Brown MS et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984:39; pp.27–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldstein JL and Brown MS. The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu. Rev. Genet. 1979:13; pp.259–89.PubMedCrossRefGoogle Scholar
  8. 8.
    Goldstein JL, Brown MS, Anderson RG, Russell DW, and Schneider WJ. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1985:1; pp.1–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Herz J, Hamann U, Rogne S, Myklebos O, Gausepohl H, and Stanley KK. Surface location and high affinity for a calcium of a 500 kDa liver membrane protein closely related to the LDL receptor suggest a physiological role as a lipoprotein receptor. EMBO J. 1988:7; pp.4119–4127.PubMedGoogle Scholar
  10. 10.
    Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, and Argraves WS. Sequence identity between alpha2-Macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J. Biol. Chem. 1990:265; pp.17401–17404.PubMedGoogle Scholar
  11. 11.
    Mahley RW, Innerarity TL, Rall SC, Jr., and Weisgraber KH. Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 1984:25; pp.1277–1294.PubMedGoogle Scholar
  12. 12.
    Davignon J, Gregg RE, and Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988:8; pp.1–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Gregg RE and Brewer HB, Jr. The role of apolipoprotein E and lipoprotein receptors in modulating the in vivo metabolism of apolipoprotein B-containing lipoproteins in humans. Clin. Chem. 1988:34; pp.28–32.Google Scholar
  14. 14.
    Glomset JA, Janssen ET, Kennedy R, and Dobbins J. Role of plasma lecithin:cholesterol acyltransferase in the metabolism of high density lipoproteins. J. Lipid Res. 1966:7; pp.638–48.PubMedGoogle Scholar
  15. 15.
    Glomset JA. The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 1968:9; pp.155–167.PubMedGoogle Scholar
  16. 16.
    Oram JF, Brinton EA, and Bierman EL. Regulation of high density lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells. J. Clin. Invest. 1983:72; pp.1611–1621.PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki N, Fidge N, Nestel P, and Yin J. Interaction of serum lipoproteins with the intestine. Evidence for specific high density lipoprotein-binding sites on isolated rat intestinal mucosal cells. J. Lipid Res. 1983:24; pp.253–264.PubMedGoogle Scholar
  18. 18.
    Schmitz G, Niemann R, Brennhausen B, Krause R, and Assmann G. Regulation of high density lipoprotein receptors in cultured macrophages: role of acyl-CoA:cholesterol acyltransferase. EMBO. J. 1985:4; pp.2773–29.PubMedGoogle Scholar
  19. 19.
    Barbaras R, Puchois P, Grimaldi P, Barkia A, Fruchart JC, and Ailhaud G. Relationship in adipose cells between the presence of receptor sites for high density lipoproteins and the promotion of reverse cholesterol transport. Biochem. Biophys. Res. Commun 1987:149; pp.545–554.PubMedCrossRefGoogle Scholar
  20. 20.
    McKnight GL, Reasoner J, Gilbert T et al. Cloning and expression of a cellular high density lipoprotein-binding protein that is up-regulated by cholesterol loading of cells. J. Biol. Chem. 1992:267; pp.12131–12141.Google Scholar
  21. 21.
    Theret N, Delbart C, Aguie G, Fruchart JC, Vassaux G, and Ailhaud G. Cholesterol efflux from adipose cells is coupled to diacylglycerol production and protein kinase C activation. Biochem. Biophys. Res. Commun. 1990:173; pp.1361–1368.PubMedCrossRefGoogle Scholar
  22. 22.
    Mendez AJ, Oram JF, and Bierman EL. Protein kinase C as a mediator of high density lipoprotein receptor-dependent efflux of intracellular cholesterol. J. Biol. Chem. 1991:266; pp.10104–10111.PubMedGoogle Scholar
  23. 23.
    Tall AR. Plasma lipid transfer proteins. J. Lipid Res. 1986:27; pp.361–367.PubMedGoogle Scholar
  24. 24.
    Steinberg D. Lipoproteins and atherosclerosis. A look back and a look ahead.. Arteriosclerosis. 1983:3; pp.283–301.PubMedCrossRefGoogle Scholar
  25. 25.
    Steinberg D. Antioxidants and atherosclerosis: A current assessment. Circulation. 1991:84; pp.1420–1425.PubMedCrossRefGoogle Scholar
  26. 26.
    Van Lenten BJ and Fogelman AM. Processing of lipoproteins in human monocyte-macrophages. J. Lipid Res. 1990:31; pp.1455–1466.PubMedGoogle Scholar
  27. 27.
    Haberland ME and Fogelman AM. The role of altered lipoproteins in the pathogenesis of atherosclerosis. Am. Heart J. 1987:113; pp.573–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Brewer HB, Jr, Zech LA, Gregg RE, Schwartz D, and Schaefer EJ. Type III hyperlipoproteinemia: diagnosis, molecular defects, pathology, and treatment. Ann. Intern. Med. 1983:98; pp.623–640.PubMedCrossRefGoogle Scholar
  29. 29.
    Mahley RW. Dietary, fat, cholesterol, and accelerated atherosclerosis.. Atherosclerosis Rev. 1979:5; pp.1–34.Google Scholar
  30. 30.
    Gregg RE, Zech LA, Schaefer EJ, and Brewer HB, Jr. Type III hyperlipoproteinemia: defective metabolism of an abnormal apolipoprotein E. Science. 1981:211; pp.584–586.Google Scholar
  31. 31.
    Havel RJ. Familial dysbetalipoproteinemia. New aspects of pathogenesis and diagnosis. Med. Clin. North. Am. 1982:66; pp.441–454.PubMedGoogle Scholar
  32. 32.
    Loscalzo J. Lipoprotein(a). A unique risk factor for atherothrombotic disease. Arteriosclerosis 1990:10; pp.672–679.PubMedCrossRefGoogle Scholar
  33. 33.
    Miles LA and Plow EF. Lp(a): an interloper in the fibrinolytic system. Thromb. Haemost. 1990:63; pp.331–335.PubMedGoogle Scholar
  34. 34.
    Miller GJ and Miller NE. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975:1; pp.16–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Gordon T, Castelli WP, Hjortland MC, Kannel WB, and Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham study. Am. J. Med. 1977:63; pp.707–714.CrossRefGoogle Scholar
  36. 36.
    Miller NE, Thelle DS, Forde OH, and Mjos OD. The Tromso heart-study: high-density lipoproteins and coronary heart-disease: a prospective case-control study. Lancet. 1977:1; pp.965–968.PubMedCrossRefGoogle Scholar
  37. 37.
    Gordon DJ and Rifkind BM. High-density lipoprotein--the clinical implications of recent studies. N. Engl. J. Med. 1989:321; pp.1311–1316.PubMedCrossRefGoogle Scholar
  38. 38.
    Rader DJ, Ikewaki K, Duverger N et al. Very low high-density lipoproteins without coronary atherosclerosis. Lancet. 1993:342; pp.1455–1458.PubMedCrossRefGoogle Scholar
  39. 39.
    Alaupovic P. Conceptual development of the classification systems of plasma lipoproteins. Protides of the biological fluids. Proc of 19th Colloquium. 1972:; pp.9–19.Google Scholar
  40. 40.
    Kostner G and Alaupovic P. Studies of the composition and structure of plasma lipoproteins. Separation and quantification of the lipoprotein families occurring in the high density lipoproteins of human plasma. Biochem. 1972:11; pp.3419–3428.CrossRefGoogle Scholar
  41. 41.
    Osborne JC, Jr. and Brewer HB, Jr. The plasma lipoproteins. Adv. Protein. Chem. 1977:31; pp.253–337.PubMedCrossRefGoogle Scholar
  42. 42.
    Nestruck AC, Niedmann PD, Wieland H, and Seidel D. Chromatofocusing of human high density lipoproteins and isolation of lipoproteins A and A-I. Biochim. Biophys. Acta. 1983:753; pp.65–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Cheung MC and Albers JJ. Characterization of lipoprotein particles isolated by immunoaffinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-II. J. Biol. Chem. 1984:259; pp.12201–12209.PubMedGoogle Scholar
  44. 44.
    Puchois P, Kandoussi A, Fievet P et al. Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis 1987:68; pp.35–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Barbaras R, Puchois P, Fruchart JC, and Ailhaud G. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI:AII particles. Biochem. Biophys. Res. Commun. 1987:142; pp.63–69.PubMedCrossRefGoogle Scholar
  46. 46.
    Schultz JR, Verstuyft JG, Gong EL, Nichols AV, and Rubin EM. ApoAI and apoAl + apoAll trangenic mice: a comparison of atherosclerotic susceptibility.. Circulation. 1992:86; pp.1–472CrossRefGoogle Scholar
  47. 47.
    Mowri H-O, Patsch W, Smith LC, Gotto AM, Jr, and Patsch JR. Different reactivities of HDL2 subfractions with hepatic lipase. Circulation. 1990:82; p.558Google Scholar
  48. 48.
    Jahn CE, Osborne JC, Jr., Schaefer EJ, and Brewer HB, Jr. Activation of the enzymic activity of hepatic lipase by apolipoprotein A-II. Characterization of a major component of high density lipoprotein as the activating plasma component in vitro. Eur. J. Biochem. 1983:131; pp.25–29.PubMedCrossRefGoogle Scholar
  49. 49.
    Rader DJ, Castro G, Zech LA, Fruchart JC, and Brewer HB, Jr. In vivo metabolism of apolipoprotein A-I on high density lipoprotein particles LpA-I and LpA-I, A-II. J. Lipid Res. 1991:32; pp.1849–1859.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • H. Bryan BrewerJr.
    • 1
  1. 1.National Heart, Lung, and Blood Institute National Institutes of HealthMolecular Disease BranchBethesdaIsrael

Personalised recommendations