Advertisement

Gene Therapy in Heart Disease

  • Louis C. Smith
  • Randy C. Eisensmith
  • Savio L. C. Woo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 369)

Abstract

Interest in gene therapy arises from the realization that, for many human diseases, current treatment of human disease, genetic or otherwise, is generally aimed at symptoms or secondary defects and almost never at the precise biochemical or genetic disease itself. The ideal treatment could involve actual change or replacement of defective genes (Friedman, 1983). In spite of remarkable surgical and pharmaceutical advances, therapy of the more than 5000 genetic disorders is not a clinical reality. The most effective drugs act, not only in the target organ, but also in other tissues, where they produce side effects. Moreover, drugs are expensive and must be continued for lifetime. Gene therapy is an alternative to a lifetime of medication, particularity when effective drugs do not exist.

Keywords

Gene Delivery Familial Hypercholesterolemia Nuclear Pore Complex Familial Hypercholesterolemia WHHL Rabbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K.D., Thompson, J.A., Dipietro, J.M., Montgomery, K.T., Reid, L.M., Anderson, W.F., 1989, Gene expression in implanted rat hepatocytes following retroviral-mediated gene transfe, Somat. Cell Mol. Genet. 15:215–27.CrossRefGoogle Scholar
  2. Anderson, R.G.W., Kamen, B.A., Rothberg, K.G., Lacey, S.W., 1992, Potocytosis: sequestration and transport of small molecules by caveolae, Science 25:410–1.CrossRefGoogle Scholar
  3. Bilheimer, D.M., Goldstein, J.L., Grundy, S.C., Starzl, T.E., Brown, M.S., 1984, Liver transplantation provides low density lipoprotein receptors and lowers plasma cholesterol in a child with homozygous familial hypercholesterolemia, New Engl. J. Med. 311:1658–1664.CrossRefGoogle Scholar
  4. Buja, L.M., Kita, T., Goldstein, J.L., Watanabe, Y., Brown, M.S., 1983, Cellular pathology of progressive atherosclerosis in the WHHL rabbit, an animal model of familial hypercholesterolemia, Arterioscler. 3:87–99.CrossRefGoogle Scholar
  5. Chowdhury, J.R., Grossman, M., Gupta, S., Chowdhury, N.R., Baker, J.R. Jr., Wilson, J.M., 1991, Long term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits, Science 254:1802–1805.CrossRefGoogle Scholar
  6. Cohen, R.J., Paine, P.L., 1992, Biophysics of nucleocytoplasmic transport, in “Nuclear Trafficking,” C.M. Feldherr, ed., Academic Press, New York.Google Scholar
  7. Cotten, M., Langle-Rouault, F., Kirlappos, H., Wagner, E., Mechtler, K., Zenke, M., Beug, H., Birnstiel M.L., 1990, Transferrin-polycation-mediated introduction of DNA into human leukemic cells: stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels, Proc. Natl. Acad. Sci. USA 87:4033–4037.CrossRefGoogle Scholar
  8. Cotten, M., Wagner, E., Zatloukal, K., Phillips, S., Curiel, D.T., Birnsteil, M.L., 1992, High-efficiency receptor-mediated delivery of small and large (48 kilobase) gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles, Proc. Natl. Acad. Sci. USA 89:6094–6098.CrossRefGoogle Scholar
  9. Cristiano, R., Smith, L.C., Woo, S.L.C., 1993a, Hepatic gene therapy: receptor-mediated gene delivery and elevated expression in primary hepatoctyes, Proc. Natl. Acad. Sci. USA 90:2122–2127.CrossRefGoogle Scholar
  10. Cristiano, R.J., Smith, L.C., Kay, M.A., Brinkley, B., Woo, S.L.C., 1993b, Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus/DNA complex, Proc. Natl. Acad. Sci. USA 90:11548–11552.CrossRefGoogle Scholar
  11. Curiel, D.T., Agarwal, S., Wagner, E., Cotten, M., 1991, Adenovirus enhancement of transferrin polylysine mediated gene delivery, Proc. Natl. Acad. Sc. USA 88:8850–8854.CrossRefGoogle Scholar
  12. Curiel, D.T., Wagner, E., Cotten, M., Birnstiel, M.L., Loechel, S., Hu, P.C., 1992a, High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes, Hum. Gene Ther. 3:147–154.CrossRefGoogle Scholar
  13. Curiel, D.T., Agarwal, S., Romer, M.U., Wagner, E., Cotten, M,. Birnstiel, M.L., Boucher, R.C., (1992b) Gene transfer to respiratory epithelial cells via the receptor-mediated endocytosis pathway, Am. J Respir. Cell Mol. Biol. 6:247–252.Google Scholar
  14. Dingwall, C., Laskey, R.A., (1991) Nuclear targeting sequences–a consensus?, Trends in Biol. Sci. 16:478–481.CrossRefGoogle Scholar
  15. Dolník, V., Novotny, M.V., (1993) Separation of amino acid homopolymers by capillary gel electrophoresis, Anal. Chem. 65:563–567.CrossRefGoogle Scholar
  16. Doms, R.W., White, J., Boulay, F., Helenius, A., 1991, Influenza virus hemagglutinin and membrane fusion, in “Membrane Fusion,” J. Wilschut and D. Hoekstra, eds., Marcel Dekker, Inc. New York.Google Scholar
  17. Feldherr, C.M., Akin, D., 1990, EM visualization of nucleocytoplasmic transport processes, Electron Microsc Rev 3:73–86.CrossRefGoogle Scholar
  18. T. Friedmann, 1983, “Gene Therapy-Fact and Fiction,” Cold Spring Harbor Laboratory, New York.Google Scholar
  19. Fujimoto, K., da Silva, P., 1988, Surface views of nuclear pores in isolated rat liver nuclei as revealed by fracture-flip/Triton-X. Eur. J. Cell. Biol 50:390–397.Google Scholar
  20. Garcia-Bustos, J., Heitman, J., Hall, M.N. 1991, Nuclear protein localization, Bioch. Biophys. Acta. 1071:83–101.CrossRefGoogle Scholar
  21. Goldfarb, D.S., Gariepy, J., Schoolnik, G., Kornberg, R.D., 1986, Synthetic peptides as nuclear localization signals, Nature 322:641–644.CrossRefGoogle Scholar
  22. Goldstein, J.L., Brown, M.S., Anderson, R.G.W., Russell, D.W., Schneider, W., 1985, Receptor-mediated endocytosis: concepts emerging from the LDL receptor system, Ann. Rev. Cell Biol. 1:1–39.CrossRefGoogle Scholar
  23. Goldstein, J.L., Brown, M.S., 1989, Familial hypercholesterolemia, in: “Metabolic Basis of Inherited Disease,” C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, eds., McGraw-Hill, NewYork.Google Scholar
  24. Grossman, M., Raper, S.E., Kozarsky, K., Stein, E.A., Engelhardt, J.F., Muller, D., Lupien, P.J., Wilson, J.M., 1994, Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolemia, Nature Genetics 6:335–341.CrossRefGoogle Scholar
  25. Gottschalk, S., Cristiano, R.J., Smith, L.C., Woo, S.L.C., 1994, Folate-mediated gene delivery to tumor cells, Gene Ther. 2:1–7.Google Scholar
  26. Hoeben, R.C., Fallaux, F.J., van Tilburg, N.H., Cramer, S.J., van Ormondt, H., Briet, E., van der E.b., A.J., 1993, Toward gene therapy for hemophila A: long-term persistence of factor VIII-secreting fibroblasts after transplantation into immunodeficient mice, Hum. Gene Ther. 4:179–186.CrossRefGoogle Scholar
  27. Ishibashi, S., Brown, M.S., Goldstein, J.L., Gerard, R.D., Herz, H.J., 1993, Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery, J Clin. Invest. 92:883–891.CrossRefGoogle Scholar
  28. Lanford, R.E., Kanda, P., Kennedy, R.C., 1986, Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal, Cell 46:575–582.CrossRefGoogle Scholar
  29. Lanford, R.E., White, R.G., Dunham, R.G., Kanda, P., 1988, Effect of basic and nonbasic amino acid substitutions on transport induced by simian virus 40 T-antigen synthetic peptide nuclear transport signals, Mol. Cell Biol. 8:2722–2729.Google Scholar
  30. Leamon, C.P., Low, P.S., 1991, Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis, Proc. Natl. Acad. Sci. USA 88:5572–5576.CrossRefGoogle Scholar
  31. Leamon, C.P., Low, P.S., 1993, Cytoxicity of momordin-folate conjugates in cultured human cells, J. Biol. Chem. 267:24966–24971.Google Scholar
  32. Li, J., Fang, B., Eisensmith, R.C., Li, X.H.C., Nasonkin, I., Lin-Lee, Y.C., Mims, M., Hughes, A., Montgomery, C., Roberts, J., Parker, T., Levine, D., Woo, S.L.C., 1994, In vivo gene therapy for hyperlipidemia: phenotypic correction in Watanabe rabbits by hepatic delivery of the rabbit LDL receptor gene, J. Clin. Invest., accepted.Google Scholar
  33. Luby-Phelps, K., Castle, P.E., Taylor, D.L., Lanni, F., 1987, Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3t3 cells. Proc. Natl. Acad. Sci. USA 84:4910–4913.CrossRefGoogle Scholar
  34. McGraw, T.E., and Maxfield, F.R., 1992, Internalization and sorting of macromolecules: endocytosis: in “Targeted Drug Delivery.” RL Juliano, ed., Springer-Verlag.Google Scholar
  35. Michael, S.I., Huang, C., Romer, M.U., Wagner, E., Curiel, D.T., 1993, Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway, J. Biol. Chem. 268:6866–6869.Google Scholar
  36. Neda, H., Wu, C.H., Wu, G.Y., 1991, Chemical modification of an ecotropic murine leukemia virus results in redirection of its target cell specificity, J. Biol. Chem. 266:14143–14146.Google Scholar
  37. Ojcius, D.M., Young, J.D.E., 1991, Cytolytic pore-forming proteins and peptides: is there a common structural motif?, Trends in Biol. Sci. 16:225–229.CrossRefGoogle Scholar
  38. Plank, C., Zatloukal, K., Cotten, M., Mechtler, K., Wagner, E., 1992, Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexes with an artificial tetra-antennary galactose ligand. Bioconjug, Chem. 3:533–539.CrossRefGoogle Scholar
  39. Ponder, K.P., Gupta, S., Leland, F., Darlington, G., Finegold, M., Demayo, J., Ledley, F., Chowdhury, J., & Woo, S.L.C., 1991, Mouse Hepatocytes Migrate to Liver Parenchyma & Function Indefinitely After Intrasplenic Transplantation, Proc. Natl. Acad. Sci. USA 88:1217–1221.CrossRefGoogle Scholar
  40. Ramalho-Santos, J., Nir, S., Düzgünes, N., Carvalho, A.P. de, Lima, M.C.P. de, 1993, A common mechanism for influenza virus fusion activity and inactivation, Biochemistry 32:2771–2779.CrossRefGoogle Scholar
  41. Robenek, H., Harrach, B., Severs, N.J., 1991, Display of low density lipoprotein receptors is clustered, not dispersed, in fibroblast and hepatocyte plasma membranes, Arterioscl Thromb 11:261–271.CrossRefGoogle Scholar
  42. Schwartz, A.L., 1989, The Hepatic Asialoglycoprotein Receptor. CRC Crit. Rev. Biochem. 16:207–233.CrossRefGoogle Scholar
  43. Silver PA., 1991, How proteins enter the nucleus, Cell 64:489–497.CrossRefGoogle Scholar
  44. Shepherd, V.L., 1989, Intracellular mechanisms of sorting in receptor-mediated endocytosis, Trends in Physiol. Sci. 10:458–462.CrossRefGoogle Scholar
  45. Silver, P.A., 1991, How proteins enter the nucleus, Cell 64:489–497.CrossRefGoogle Scholar
  46. Turek, J.J., Leamon, C.P., Low, P.S., 1993, Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells, J. Cell Sci. 106:4223–4230.Google Scholar
  47. Wagner, E., Zenke, M., Cotten, M., Beug, H., Birnstiel, M.L., 1990, Transferrin-polycation conjugates as carriers for dna uptake into cells, Proc. Natl. Acad. Sci. USA 87:3410–3414.CrossRefGoogle Scholar
  48. Wagner, E., Cotten, M., Mechtler, K., Kirlappos, H., Birnstiel, M.L., 1991a, DNA-binding transferrin conjugates as functional gene-delivery agents: synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety, Bioconjugate Chem. 2:226–231.CrossRefGoogle Scholar
  49. Wagner, E., Cotteti, M., Foisner, R., Birnstiel, M.L., 1991b, Transferrin-polycation-DNA complexes: effect of polycations on the structure of the complex and dna delivery to cells, Proc. Natl. Acad. Sci. USA 88:4255–4259.CrossRefGoogle Scholar
  50. Wagner, E., Plank, C., Zatloukal, K., Cotten, M., Birnstiel, M.L., 1992, Influenza virus hemagglutinin HA2-N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle, Proc. Natl. Acad. Sci. 89:7934–7938.CrossRefGoogle Scholar
  51. Wagner, E., Zatloukal, K., Gotten, M., Kirlappos, H., Mechtler, K., Curiel, D.T., Birnstiel, M.L., 1992, Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes, Proc. Natl. Acad. Sci. USA 89:6099–6103.CrossRefGoogle Scholar
  52. Weatherall, D., 1994, Heroic gene surgery, Nature Genetics 6:325–326.CrossRefGoogle Scholar
  53. Wharton, S.A., Martin, S.R., Ruigrok, R.W.H., Skehel, J.J., Wiley, D.C., 1988, Membrane fusion by peptide analogues of influenza virus haemagglutinin, J. Gen. Virol. 69:1847–1857.CrossRefGoogle Scholar
  54. White, J.M., 1990, Viral and cellular membrane fusion proteins, Ann. Rev. Physiol. 52:675–697.CrossRefGoogle Scholar
  55. White, J.M., 1992, Membrane fusion, Science 258:917–924.CrossRefGoogle Scholar
  56. Wilson, J.M., Jefferson, D.M., Chowdhury, J.R., Novikoff, P.M., Johnston, D.E., and Mulligan, R.C., 1988, Retrovirus-mediated Transduction of Adult Hepatocytes, Proc. Natl. Acad. Sci. USA 85:3014–3018.CrossRefGoogle Scholar
  57. Wilson, J.M., Chowdhury, N.R., Grossman, M., Wajsman, R., Epstein, A., Mulligan, R.C., and Chowdhury, J.R., 1990, Temporary Amelioration of Hyperlipidemia in Low Density Lipoprotein Receptor-deficient Rabbits Transplanted with Genetically Modified Hepatocytes, Proc. Natl. Acad. Sci. USA 87:8437–8441.CrossRefGoogle Scholar
  58. Wilson, J.M., Grossman, M., Wu, C.H., Chowdhury, N.R., Wu, G.Y., Chowdhury, J.R., 1992, Hepatocyte-Directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits, J. Biol. Chem. 267:963–967.Google Scholar
  59. Wolff, J.A., Yee, J.-K., Skelly, H.F., Moores, J.C., Respess, J.G., Friedmann, T., and Leffert, H., 1987, Expression of Retrovirally Transduced Genes in Primary Cultures of Adult Rat Hepatocytes, Proc. Natl. Acad. Sci. USA 84:3344–3348.CrossRefGoogle Scholar
  60. Wu, G.Y., Wu, C.H., 1987. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system, J. Biol. Chem. 262:4429–4432.Google Scholar
  61. Wu, G.Y., Wu, C.H., (1988a) Evidence for targeted gene delivery to HepG2 hepatoma cells in vitro, Biochemistry 27:887–892.CrossRefGoogle Scholar
  62. Wu, G.Y., Wu, H., 1988b, Receptor-mediated gene delivery and expression in vivo, J. Biol. Chem. 263:14621–14624.Google Scholar
  63. Wu, C.H., Wilson, J.M., Wu, G.Y., 1989, Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo, J. Biol. Chem. 264:16985–16987.Google Scholar
  64. Wu, G.Y., Wilson, J.M., Shalaby, F., Grossman, M., Shafritz, D.A., Wu, C.H., 1991, Receptor-mediated gene delivery in vivo, J. Biol. Chem. 266:14338–14342.Google Scholar
  65. Yamamoto, T., Bishop, R.W., Brown, M.S., Goldstein, J.L., Russel, D.W., 1986, Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit, Science 232:1230–1237.CrossRefGoogle Scholar
  66. Zenke, M., Steinlein, P., Wagner, E., Cotten, M., Beug, H., Birnstiel, M.L., 1990, Receptor-mediated endocytosis of transferrin polycation conjugates:an efficient way to introduce DNA into hematopoietic cells, Proc. Natl. Acad. Sci. USA 87:3655–3659.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Louis C. Smith
    • 1
    • 2
  • Randy C. Eisensmith
    • 1
  • Savio L. C. Woo
    • 1
    • 2
    • 3
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA
  2. 2.Department of MedicineBaylor College of MedicineHoustonUSA
  3. 3.Howard Hughes Medical InstituteBaylor College of MedicineHoustonUSA

Personalised recommendations