Advertisement

Genetic Determinants of Myocardial Infarction

  • Jan L. Breslow
  • Marilyn Dammerman
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 369)

Abstract

A family history of myocardial infarction (MI), especially MI at an early age, is a potent risk factor for coronary artery disease (CAD). The risk increases with the number of first-degree relatives affected and is inversely related to the age at which they became affected (Roncaglioni et al., 1992). While some of this increased risk is due to shared environment, genetic factors appear to predominate (Nora et al., 1980). Monozygotic (identical) twins are significantly more likely to be concordant for CAD than are dizygotic (fraternal) twins (Goldbourt and Neufeld, 1986). Dyslipidemia, diabetes mellitus, hypertension and obesity, the major metabolic risk factors for CAD, are in large measure genetically determined. In addition, a family history of MI confers increased risk in both genders independent of other known risk factors (Colditz et al., 1991; Roncaglioni et al., 1992).

Keywords

High Density Lipoprotein Cholesterol High Density Lipoprotein Cholesterol Level Premature Coronary Artery Disease Coronary Artery Disease Risk Factor Intermediate Density Lipoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, M.A., 1991, Plasma triglyceride and coronary heart disease, Arterioscl. Thromb. 11:2–14.CrossRefGoogle Scholar
  2. Babirak, S.P., Iverius, P.-H., Fujimoto, W.Y., and Brunzell, J.D., 1989, Detection and characterization of the heterozygote state for lipoprotein lipase deficiency, Arterioscl. 9:326–34.CrossRefGoogle Scholar
  3. Ballinger, S.W., Shoffner, J.M., Hedaya, E.V. et al., 1992, Maternally transmitted diabetes and deafness associated with a 10.4kb mitochondrial DNA deletion, Nature Genet. 1:11–15.CrossRefGoogle Scholar
  4. Bell, G.I., Xiang, K.-S., and Newman, M.V. et al., 1991, Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q., Proc. Natl. Acad. Sci. USA 88:1484–8.CrossRefGoogle Scholar
  5. Berg, K., 1992, Lp(a) lipoprotein: An important genetic risk factor for atherosclerosis, in: “Molecular Genetics of Coronary Artery Disease, Candidate Genes and Processes in Atherosclerosis,” Monogr. Hum. Genet. Vol. 14, A.J. Lusis, J.I. Rotter, and R.S. Sparkes, eds., Karger, Basel, 189–207.Google Scholar
  6. Bierman, E.L., 1991, Atherosclerosis and other forms of arteriosclerosis, in: “Harrison’s Principles of Internal Medicine,” 12th ed., J.D. Wilson, E. Braunwald, and K.J. Isselbacher et al., eds., McGraw-Hill New York, 992–1001.Google Scholar
  7. Boerwinkle, E., Leffert, C.C., Lin, J., Lackner, C., Chiesa, G., and Hobbs, H.H., 1992, Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations, J. Clin. Invest. 90:52–60.CrossRefGoogle Scholar
  8. Breslow, J.L., 1989, Familial disorders of high density lipoprotein metabolism, in: “The Metabolic Basis of Inherited Disease,” Vol. I. 6th ed., CR. Scrivner, A.L. Beaudet, W.S. Sly, and D. Valle, eds., McGraw-Hill, New York, 1251–66.Google Scholar
  9. Breslow, J.L., 1991, Lipoprotein transport gene abnormalities underlying coronary heart disease susceptibility. Annu. Rev. Med. 42:357–71.CrossRefGoogle Scholar
  10. Breslow, J.L., 1993, Transgenic mouse models of lipoprotein metabolism and atherosclerosis, Proc. Natl. Acad. Sci. USA 90:8314–8.CrossRefGoogle Scholar
  11. Brinton, E.A., Eisenberg, S., and Breslow, J.L., 1990, A low-fat diet decreases high density lipoprotein (HDL) cholesterol levels by decreasing HDL apolipoprotein transport rates, J. Clin. Invest. 85:144–51.CrossRefGoogle Scholar
  12. Brown, M.S. and Goldstein, J.L., 1992, The hyperlipoproteinemias and other disorders of lipid metabolism, in: “Molecular Genetics of Coronary Artery Disease. Candidate Genes and Processes in Atherosclerosis,” Monogr. Hum. Genet. Vol. 14, A.J. Lusis, J.I. Rotter, and R.S. Sparkes, eds., Karger, Basel.Google Scholar
  13. Cambien, F., Poirier, O., and Lecerf, L. et al., 1992, Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction, Nature 359:641–4.CrossRefGoogle Scholar
  14. Chait, A. and Brunzell, J.D., 1990, Acquired hyperlipidemia (secondary dyslipoproteinemias), Endocrinol. Metab. Clinics N. Amer. 19:259–78.Google Scholar
  15. Cohen, J.C., Chiesa, G., and Hobbs, H.H., 1993, Sequence polymorphisms in the apolipoprotein(a) gene. Evidence for dissociation between apolipoprotein(a) size and plasma lipoprotein(a) levels, J. Clin. Invest. 91:1630–6.CrossRefGoogle Scholar
  16. Colditz, G.A., Rimm, E.B., Giovannucci, E., Stampfer, M.J., Rosner, B., and Willett, W.C., 1991, A prospective study of parental history of myocardial infarction and coronary artery disease in men, Am. J. Cardiol. 67:933–8.CrossRefGoogle Scholar
  17. Coresh, J., Svenson, K.L., Beaty, T.H., Kwiterovich, P.O., and Lusis, A.J., 1993, Sib-pair linkage analysis of the lipoprotein lipase gene and lipoprotein levels: The Johns Hopkins Coronary Artery Disease Family Study, Am. J. Hum. Genet. 53:Suppl: Abstract 788.Google Scholar
  18. Dammerman, M., Sandkuijl, L.A., Halaas, J.L., Chung, W., and Breslow, J.L., 1993, An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3’ untranslated region polymorphisms, Proc. Nat’l. Acad. Sci. USA 90:4562–6.CrossRefGoogle Scholar
  19. DeFronzo, R.A., Bonadonna, R.C., and Ferrannini E., 1992, Pathogenesis of NIDDM: A balanced overview, Diabetes Care 15:318–68.CrossRefGoogle Scholar
  20. Despres, J.-P., Moorjani, S., Lupien, P.J., Tremblay, A., Nadeau, A., and Bouchard, C., 1992, Genetic aspects of susceptibility to obesity and related dyslipidemias, Mol. Cell Biochem. 113:151–69.CrossRefGoogle Scholar
  21. Diamond, J.M., 1992, Diabetes running wild, Nature 357:362–3.CrossRefGoogle Scholar
  22. Froguel, P., Zouali, H., and Vionnet, N. et al., 1993, Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus, N. Eng. J. Med. 328:697–702.CrossRefGoogle Scholar
  23. Genest, J.J. Jr., Martin-Munley, S.S., and McNamara, J.R. et al., 1992, Familial lipoprotein disorders in patients with premature coronary artery disease, Circulation 85:2025–33.CrossRefGoogle Scholar
  24. Ghiselli, G., Schaefer, E.J., Zech, L.A., Gregg, R.E., and Brewer, H.B. Jr., 1982, Increased prevalence of apolipoprotein E4 in Type V hyperlipoproteinemia, J. Clin. Invest. 70:474–7.CrossRefGoogle Scholar
  25. Goldbourt, U. and Neufeld, H.N., 1986, Genetic aspects of arteriosclerosis, Arterioscl. 6:357–77.CrossRefGoogle Scholar
  26. Goldstein, J.L. and Brown, M.S., 1989, Familial hypercholesterolemia, in: “The Metabolic Basis of Inherited Disease,” Vol. I. 6th ed., C.R. Scrivner, A.L. Beaudet, W.S. Sly, and D. Valle, eds., McGraw-Hill, New York, 1215–50.Google Scholar
  27. Groop, L.C., Kankuri, M., and Schalin-Jantti, C., et al., 1993, Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus, N. Eng. J. Med. 328:10–14.CrossRefGoogle Scholar
  28. Hixson, J.E., 1991, Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Apolipoprotein E polymorphisms affect atherosclerosis in young males, Arterioscl. Thromb. 11:1237–44.CrossRefGoogle Scholar
  29. Jauhiainen, M., Koskinen, P., and Ehnholm, C., et al., 1991, Lipoprotein (a) and coronary heart disease risk: a nested case-control study of the Helsinki Heart Study participants, Atheroscl. 89:59–67.CrossRefGoogle Scholar
  30. Jeunemaitre, X., Soubrier, F., and Kotelevtsev, Y.V. et al., 1992, Molecular basis of human hypertension: Role of angiotensinogen, Cell 71:169–80.CrossRefGoogle Scholar
  31. Julier, C., Hyer, R.N., and Davies, J. et al., 1991, Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility, Nature 354:155–9.CrossRefGoogle Scholar
  32. Kane, J.P. and Havel, R.J., 1989, Disorders of the biogenesis and secretion of lipoproteins containing the apolipoproteins, in: “The Metabolic Basis of Inherited Disease,” Vol. I. 6th ed., C.R. Scrivner, A.L. Beaudet, W.S. Sly, D. Valle, eds., McGraw-Hill, New York, 1139–64.Google Scholar
  33. Kannel, W.B. and McGee, D.L., 1979, Diabetes and cardiovascular disease. The Framingham study, J.A.M.A. 241:2035–8.CrossRefGoogle Scholar
  34. Krolewski, A.S., Canessa, M., and Warram, J.H. et al., 1988, Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus, N. Engl. J. Med. 318:140–5.CrossRefGoogle Scholar
  35. Kurtz, T. W., 1993, Genetics of essential hypertension, Am. J. Med. 94:77–84.CrossRefGoogle Scholar
  36. Leahy, J.L. and Boyd, A.E., III, 1993, Diabetes genes in non-insulin-dependent diabetes mellitus, N. Engl. J. Med 328:56–7.CrossRefGoogle Scholar
  37. Lifton, R.P., Dluhy, R.G., and Powers, M. et al., 1992, A chimaeric 11 ß-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension, Nature 355:262–5.CrossRefGoogle Scholar
  38. Ma, Y., Zhang, H., Liu, M.-S., Frohlich, J., Brunzell, J.D., and Hayden, M.R., 1993, Type III hyperlipoproteinemia in apo E2/2 homozygotes: Possible role of mutations in the lipoprotein lipase gene, Circulation 88: Suppl:1–179.Google Scholar
  39. Mahley, R.W. and Rall, S.C. Jr., 1989, Type III hyperlipoproteinemia (Dysbetalipoproteinemia): The role of apolipoprotein E in normal and abnormal lipoprotein metabolism, in: “The Metabolic Basis of Inherited Disease,” Vol. I. 6th ed., C.R. Scrivner, A.L. Beaudet, W.S. Sly, and D. Valle, eds., McGraw-Hill, New York, 1195–1213.Google Scholar
  40. Mark, A.L., 1992, ’syndrome X’: Is it a significant cause of hypertension? Negative, Hosp. Pract. 27: Suppl 1:41–4.Google Scholar
  41. Mattock, M.B., Keen, H., and Viberti, G.C. et al., 1988, Coronary heart disease and urinary albumin excretion rate in Type 2 (non-insulin-dependent) diabetic patients, Diabetologia 31:82–7.CrossRefGoogle Scholar
  42. Neel, J.V., 1962, Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 14:353–62.Google Scholar
  43. Nora, J.J., Lortscher, R.H., Spangler, R.D., Nora, A.H., and Kimberling, W.J., 1980, Genetic-epidemiologic study of early-onset ischemic heart disease, Circulation 61:503–8.CrossRefGoogle Scholar
  44. Ohishi, M., Fujii, K., and Minamino, T. et al., 1993, A potent genetic risk factor for restenosis, (Letter.) Nature Genet. 5:324–5.CrossRefGoogle Scholar
  45. Pi-Sunyer, F.X., 1993, Medical hazards of obesity, Ann. Intern. Med. 119:655–60.Google Scholar
  46. Price, W.H., Kitchin, A.H., Burgon, P.R.S., Morris, S.W., Wenham, P.R., and Donald, P.M., 1989, DNA restriction fragment length polymorphisms as markers of familial coronary heart disease, Lancet i:1407–11.CrossRefGoogle Scholar
  47. Reaven, G.M., 1988, Role of insulin resistance in human disease, Diabetes 37:1595–607.CrossRefGoogle Scholar
  48. Rees, A., Shoulders, C.C., Stocks, J., Galton, D.J., and Baralle, F.E., 1983, DNA polymorphism adjacent to the human apoprotein AI gene: Relation to hypertriglyceridemia, Lancet i:444–6.CrossRefGoogle Scholar
  49. Rhoads, G.G., Dahlen, G., Berg, K., Morton, N.E,. and Dannenberg, A.L., 1986, Lp(a) lipoprotein as a risk factor for myocardial infarction, J.A.M.A. 256:2540–4.CrossRefGoogle Scholar
  50. Ridker, P.M., Hennekens, C.H., and Stampfer, M.J., 1993a, A prospective study of lipoprotein(a) and the risk of myocardial infarction, J.A.M.A. 270:2195–9.CrossRefGoogle Scholar
  51. Ridker, P.M., Gaboury, C.L., Conlin, P.R., Seely, E.W., Williams, G.H., and Vaughan, D.E., 1993b, Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function, Circulation 87:1969–73.CrossRefGoogle Scholar
  52. Roncaglioni, M.C., Santoro, L., and D’Avanzo, B., et al., 1992, Role of family history in patients with myocardial infarction. An Italian case-control study, Circulation 85:2065–72.CrossRefGoogle Scholar
  53. Shohat, T., Raffel, L.F., Vadheim, C.M., and Rotter, J.I., 1992, Diabetes mellitus and coronary heart disease genetics, in: “Molecular Genetics of Coronary Artery Disease. Candidate Genes and Processes in Atherosclerosis,” Monogr. Hum. Genet. Vol. 14, A.J. Lusis, J.I. Rotter, and R.S. Sparkes, eds., Karger, Basel.Google Scholar
  54. Shohat, T., Raffel, L.F., Vadheim, C.M., and Rotter, J.I., 1992, Diabetes mellitus and coronary heart disease genetics, in: “Molecular Genetics of Hypertension. Candidate Genes and Processes in Atherosclerosis,” Monogr. Hum. Genet. Vol. 14, A.J. Lusis, J.I. Rotter, and R.S. Sparkes, eds., Karger, Basel.Google Scholar
  55. Shoulders, C.C., Harry, P. J., and Lagrost, L. et al., 1991, Variation at the apo AI/CIII/AIV gene complex is associated with elevated plasma levels of apo CIII, Atheroscl. 87:239–47.CrossRefGoogle Scholar
  56. Sorrentino, M.J., Vielhauer, C., Eisenbart, J.D., Fless, G.M., Scanu, A.M., and Feldman T. 1992, Plasma lipoprotein(a) protein concentration and coronary artery disease in black patients compared with white patients, Am. J. Med. 93:658–62.CrossRefGoogle Scholar
  57. Stamler, J., 1993, Epidemic obesity in the United States, Arch Intern Med 153:1040–3.CrossRefGoogle Scholar
  58. Steiner, D.F., Tager, H.S., Chan, S.J., Nanjo, K., Sanke, T., and Rubenstein, A.H., 1990, Lessons learned from molecular biology of insulin-gene mutations, Diabetes Care 13:600–9.CrossRefGoogle Scholar
  59. Stunkard, A.J., Harris, J.R., Pedersen, N.L., and McClearn, G.E., 1990, The body-mass index of twins who have been reared apart, N. Engl. J. Med. 322:1483–7.CrossRefGoogle Scholar
  60. Tall, A.R., 1993, Plasma cholesterol ester transfer protein, J. Lipid Res. 34:1255–74.Google Scholar
  61. Taylor, S.I., 1992, Lilly Lecture: Molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene, Diabetes 41:1473–90.CrossRefGoogle Scholar
  62. Thorsby, E. and Ronningen, K.S., 1993, Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to Type 1 (insulin-dependent) diabetes mellitus, Diabetologia 36:371–7.CrossRefGoogle Scholar
  63. Van den Ouweland, J.M.W., Lemkes, H.H.P.J., and Ruitenbeek, W. et al., 1992, Muation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness, Nature Genet. 1:368–71.CrossRefGoogle Scholar
  64. Ward, K., Hata, A., and Jeunemaitre, X. et al., 1993, A molecular variant of angiotensinogen associated with preeclampsia, Nature Genet. 4:59–61.CrossRefGoogle Scholar
  65. Williams, G.H., 1991, Hypertensive vascular disease, in: “Harrison’s Principles of Internal Medicine,” 12th ed., J.D. Wilson, E. Braunwald, and K.J. Isselbacher et al., eds., McGraw-Hill, New York, 1001–15.Google Scholar
  66. Williams, G.H. and Hollenberg, N.K., 1993, Derangements in renin-angiotensin regulation in the pathogenesis of hypertension, in: “Cellular and Molecular Biology of The Renin-Angiotensin System,” M.K. Raizada, M.I. Phillips, and Sumners, eds., CRC Press, Boca Raton, 515–36.Google Scholar
  67. Wilson, D.E., Emi, M., and Iverius, P.-H. et al., 1990, Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation, J. Clin. Invest. 86:735–50.CrossRefGoogle Scholar
  68. Zannis, V.I., Kardassis, D., and Zanni, E.E., 1993, Genetic mutations affecting human lipoproteins, their receptors, and their enzymes, in: “Advances in Human Genetics,” Vol. 21. 145–319, H. Harris, K. Hirschhorn eds, Plenum Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jan L. Breslow
    • 1
  • Marilyn Dammerman
    • 1
  1. 1.Laboratory of Biochemical, Genetics and MetabolismThe Rockefellow UniversityNew YorkUSA

Personalised recommendations