Skip to main content

Metal Exposure of the Squirrel Monkey Fetus as a Model of Human Neuropsychiatric Disorders

  • Chapter
  • 89 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 275))

Abstract

Figure 1 gives a tentative overview of the spectrum of chronic neuropsychiatric disorders, i.e.,cognitive and emotive disturbances leading to long-term continuous or repeated need of help from the health care system, and an indication of the change of their prevalence over age. In total, these disorders may affect in the order of 10–20% or more of a population, and are responsible for a large part of human suffering and economic costs in any society. For the sake of prevention, research into the causes of these entities is important. Little is known even of the specific time of the etiology/pathogenesis. There is, obviously, more evidence for a prenatal etiology/pathogenesis, as to specific agents and times of origin, for those disorders which are diagnosed at an early postnatal age, e.g.,mental retardation, than for those which are diagnosed later, such as dementia (see Figure 1). However, the high prevalence, in mental retardation, of other neuropsychiatric disorders (see, e.g.,Dosen, 1989) suggests the possibility that it is not uncommon that also these disorders have a prenatal etiology/pathogenesis. In the case of schizophrenia, there are indications of both prenatal (“developmental”) and late (“degenerative”) pathogeneses. An example of an established link between fetal disturbances and a much later development of a neuropsychiatric disturbance is the high incidence of Alzheimer’s dementia in Down’s syndrome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accardo P, Whitman B, Caul J, Rolfe U (1988) Autism and plumbism. A possible association. Clin. Pediatr. Phila. 27:41–44.

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Bunney WE Jr, Potkin SG, Wigal SG, Hagman JO, Sandman CA, Jones EG (1993a) Altered distribution of nicotinamide-adenine-dinucleotide-phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances in cortical development. Arch. Gen. Psychiat. 50:169–177.

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Viñuela A, Kim JJ, Potkin SG, Bunney WE Jr, Jones EG (1993b) Distorted distribution of nicotinamide-adenine-dinucleotide-phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch. Gen. Psychiat. 50:178–187.

    Article  PubMed  CAS  Google Scholar 

  • Altschuler LL, Conrad A, Kovelman JA, Scheibel A (1987) Hippocampal pyramidal cell orientation in schizophrenia. Arch. Gen. Psychiatr. 44: 1094–1098.

    Article  Google Scholar 

  • Altschuler LL, Casanova MF, Goldberg TE, Kleinman JE (1990) The hippocampus and parahippocampus in schizophrenic, suicide and control brains. Arch. Gen. Psychiat. 47: 1029–1034.

    Article  Google Scholar 

  • Amato M, Howald H, von Muralt G (1987) Fetal sex distribution of peri-and intraventricular hemorrhage in preterm infants. Eur. Neurol. 27: 20–23.

    Article  PubMed  CAS  Google Scholar 

  • Arnold SE, Hyman BT, van Hoesen GW, Damasio AR (1991 Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch. Gen. Psychiat. 48: 625–632.

    Article  PubMed  CAS  Google Scholar 

  • Baghurst PA, McMichael AJ, Wigg NR, Vimpuni G., Robertson E., Roberts RJ, Tong S-L (1992) Environmental exposure to lead and children’s intelligence at the age of seven years: The Port-Pirie cohort study. N. Engl. J. Med. 327: 1279–1284.

    Article  PubMed  CAS  Google Scholar 

  • Bálazs R, Lewis PD, Patel AJ. Nutritional deficiencies and brain development, in: “Human growth”,F Falkner, JM Tanner, eds., Bailliere Tindall, London, Vol. 3, pp 415–480,1979.

    Chapter  Google Scholar 

  • Beckmann H, Jakob H (1991) Prenatal disturbances of nerve cell migration in the entorhinal region: a common vulnerability factor in functional psychoses? J. Neural. Transm. Gen. Sect. 84: 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Bellinger DA, Leviton C, Waternaux H, Needleman, Rabinowitz M (1987) Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. New Engl. J. Med. 316: 1037–1043.

    Article  PubMed  CAS  Google Scholar 

  • Bellinger D, Sloman J, Leviton A, Rabinowitz, M, Needleman HL, Waternaux C (1991) Low-level lead exposure and children’s cognitive function in the preschool years. Pediatrics 87: 219–227.

    PubMed  CAS  Google Scholar 

  • Benes FM (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch. Gen. Psychiat. 44: 608–616.

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Davidson B, Bird ED (1986) Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch. Gen. Psychiat. 43: 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices in schizophrenic and schizoaffective patients. Arch. Gen. Psychiat. 48:996–1001.

    Article  PubMed  CAS  Google Scholar 

  • Blackman Jr SS (1937) The lesions of lead encephalitis in children. Bull. Johns Hopkins Hosp. 61: 1–61.

    Google Scholar 

  • Bogerts B (1984) Zur Neuropathologie der Schizophrenien. Fortschr. Neurol. Psychiat. 52: 428–437.

    Article  PubMed  CAS  Google Scholar 

  • Bogerts B, Lesch A, Lange H, Zech M, Tutsch J (1983) Hypotrophy of the corpus callosum in schizophrenia. Neurosci. Lett., suppl. 14: 413.

    Google Scholar 

  • Bogerts B, Falkai P, 1992, Clinical and neurodevelopmental aspects of brain pathology in schizophrenia, in: “Developmental Neuropathology of Schizophrenia”, SA Mednick, TD Cannon, CE Barr, JM LaFosse, eds., Plenum Press, New York, NY: pp 93–120.

    Google Scholar 

  • Bouchard Jr TJ, Lykken DT, McGue M, Segal NL, Tellegen A (1990) Sources of human psychological differences: The Minnesota study of twins reared apart. Science 250: 223–228.

    Article  PubMed  Google Scholar 

  • Bourgeois JA, Nisenbaum J, Drexler KG, Dobbins KM, Hall MJ (1992) A case of subcortical grey matter heterotopia presenting as bipolar disorder. Compr. Psychiatr. 33:407–410.

    Article  CAS  Google Scholar 

  • Brady K, Herrera Y, Zenick H (1975) Influence of parental lead exposure on subsequent learning ability of offspring. Pharmacol. Biochem. Behav 3: 561–565.

    Article  PubMed  CAS  Google Scholar 

  • Brann Jr AW, Myers RE (1975) Central nervous system findings in the newborn monkey following severe in utero partial asphyxia. Neurology 25: 327–338.

    Article  PubMed  Google Scholar 

  • Brown RS, Hingerty BE, Dewan JC, Klug A (1983) Pb(II)-catalyzed cleavage of the sugar-phosphate backbone of yeast tRNA(Phe) -implications for lead toxicity and self-splicing RNA. Nature 303: 543–546.

    Article  PubMed  CAS  Google Scholar 

  • Brown R, Colter N, Corsellis JAN, Crow TJ, Frith CD, Jagoe R, Johnstone EC, Marsh L (1986) Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area and pafahippocampal gyrus compared with affective disorder. Arch. Gen. Psychiat. 43: 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Brun A. The subpial granular layer of the fetal cerebral cortex in man. Acta Pathol. Microbiol. Scand., Suppl. 179, 1965.

    Google Scholar 

  • Bruton CJ, Crow TJ, Frith CD, Johnstone EC, Owens DGC, Roberts GW (1990) Schizophrenia and the brain: a prospective clinico-neuropathological study. Psychol. Med. 20: 285–304.

    Article  PubMed  CAS  Google Scholar 

  • Bryce-Smith D, Deshpande RR, Hughes J, Waldron HA (1977) Lead and cadmium levels in stillbirths. Lancet 1: 1159.

    Article  PubMed  CAS  Google Scholar 

  • Butt EM, Pearson HE, Simonsen DE (1952) Production of meningoceles and cranioschisis in chick embryos with lead nitrate. Proc. Soc. Exp. Biol. Med. 79: 247–249.

    PubMed  CAS  Google Scholar 

  • Catizone O, Gray P (1941) Experiments on chemical interference with the early morphogenesis of the chick. II. The effects of lead on the central nervous system. J. Exp. Zool. 87: 71–83.

    Article  CAS  Google Scholar 

  • Cheney D, Seyfarth, R, Smuts B (1986) Social relationships and social cognition in nonhuman primates. Science 234: 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  • Choi BEH, Lapham LOW, Amin-Zaki L, Saleem T (1978) Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis in the human fetal brain: A major effect of methyl mercury poisoning in utero. J. Neuropath. Exp. Neurol. 37: 719–733.

    Article  PubMed  CAS  Google Scholar 

  • Collins MF, Hrdina PD, Whittle E, Singhal RL (1982) Lead in blood and brain regions of rats chronically exposed to low doses of the metal. Toxicol. Appl. Pharmacol. 65: 314–322.

    Article  PubMed  CAS  Google Scholar 

  • Conrad AJ, Abebe T, Austin R, Forsythe S, Scheibel AB. Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch. Gen. Psychiat. 48: 413–417.

    Google Scholar 

  • Cooney GH, Bell A, McBride W, Carter C (1989) Neurobehavioral consequences of prenatal low lead exposure to lead. Neurotoxicol. Teratol. 11: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Crome L, Stern J, 1967, “The Pathology of Mental Retardation”, Little, Brown and Company, Boston.

    Google Scholar 

  • Crow TJ, Ball J, Bloom SR, Brown R, Bruton CJ, Colter N, Frith CD, Johnstone EC, Owens DC, Roberts GW (1989) Schizophrenia as an anomaly of development of cerebral asymmetry: a postmortem study and a proposal concerning the genetic basis of the disease. Arch. Gen. Psychiatr. 46: 1145– 1150.

    Article  PubMed  CAS  Google Scholar 

  • David O, Clark J, Voeller K (1972) Lead and hyperactivity. Lancet 2: 900–903.

    Article  PubMed  CAS  Google Scholar 

  • David OJ, McGann B, Hoffman S, Sverd J, Clark J (1976) Low lead levels and mental retardation. Lancet 6: 1376–1379.

    Article  Google Scholar 

  • Davis JM, Svendsgaard DJ (1987) Lead and child development (Commentary). Nature 329: 297–300.

    Article  PubMed  CAS  Google Scholar 

  • de Gennaro LO (1978) The effects of lead nitrate on the central nervous system of the chick embryo. I. Observations of light and electron microscopy. Growth 42: 141–155.

    PubMed  Google Scholar 

  • Dietrich KN, Krafft KM, Bier M, Succop PA, Berger O, Bornschein RL (1986) Early effects of fetal lead exposure: Neurobehavioral findings at 6 months. Int. J. Biosoc. Res. 8: 151–168.

    Google Scholar 

  • Dietrich KN, Berger OG, Succop PA (1993) Lead exposure and the motor developmental status of urban six-year-old children in the Cincinnati prospective study. Pediatrics 91: 301–307.

    PubMed  CAS  Google Scholar 

  • Dom R, de Saedeler J, Bogerts B, Hopf A (1981) Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc. Nat. Acad. Sci.USA 84:561–563.

    Google Scholar 

  • Dosen A (1989) Diagnosis and treatment of mental illness in mentally retarded children: A developmental model. Child Psychiat. Hum. Dev. 20: 73–84.

    Article  CAS  Google Scholar 

  • Drew WG, Kostas J, McFarland DJ, De Rossett SE (1979) Effects of neonatal lead exposure on apomorphine-induced aggression and stereotypies in the rat. Pharmacol. 18: 257–262.

    Article  CAS  Google Scholar 

  • Edwards MJ, Beatson J (1984) Effects of lead and hyperthermia on prenatal brain growth of guinea pigs. Teratology 30: 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Ernhart CB, Wolf AW, Kennard MJ, Erhard P, Filipovich HF, Sokol RJ (1986) Intrauterine exposure to low levels of lead: The status of the neonate. Arch. Environ. Health 41:287–291.

    Article  PubMed  CAS  Google Scholar 

  • Ernhart CB, Morrow-Tlucak M, Wolf AW, Super D, Drotar D (1989) Low level lead exposure in the prenatal and early preschool periods: intelligence prior to school entry. Neurotoxicol. Teratol. 11: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Falkai P, Bogerts B (1986) Cell loss in the hippocampus of schizophrenics. Eur. Arch. Psychiat. Neurol. Sci. 236: 154–161.

    Article  CAS  Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988) Cell loss and volume reduction in the entorhinal cortex of schizophrenics. Biol. Psychiat. 24: 515–521.

    Article  PubMed  CAS  Google Scholar 

  • Falkai P, Bogerts B (1989) Morphometric evidence for developmental disturbances in brains of some schizophrenics. Schizophrenia Res. 2: 99.

    Article  Google Scholar 

  • Ferm VH, Carpenter SJ (1967) Developmental malformations resulting from the administration of lead salts. Exp. Mol. Pathol 7: 208–213.

    Article  PubMed  CAS  Google Scholar 

  • Fisman M (1975) The brain stem in psychosis. Brit. J. Psychiat. 126: 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Gaffney GR, Tsai LY (1987) Magnetic resonance imaging of high level autism. J. Autism Dev. Disord. 17: 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Gerber GB, Léonard A, Jacquet P (1980) Toxicity, mutagencity and teratogenicity of lead. Mutat. Res. 76: 115–141.

    Article  PubMed  CAS  Google Scholar 

  • Ghafour SY, Khuffash FA, Ibrahim HS, Reavey PC (1984) Congenital lead intoxication with seizures due to prenatal exposure. Clin. Ped. 23: 282–283.

    Article  CAS  Google Scholar 

  • Gibson JL (1904) A plea for painted railings and painted walls of rooms as the source of lead poisoning among Queensland children. Australasian Med. Gaz. 23: 149–153.

    Google Scholar 

  • Gilani SH (1973) Congenital anomalies in lead poisoning. Ohstet. Gynekol. 41: 265–268.

    CAS  Google Scholar 

  • Goldstein GW, Ashbury AK, Diamond I (1974) Pathogenesis of lead encephalopathy: Uptake of lead and reaction of brain capillaries. Arch. Neurol. 31: 382–389,

    Article  PubMed  CAS  Google Scholar 

  • Grant LD, Kimmel CA, West Gl, Martinez-Vargas CM, Howard JL (1980) Chronic low-level lead toxity in the rat: II. Effects on postnatal physical and behavioral development. Toxicol. Appl. Pharmacol. 56: 42–58.

    Article  PubMed  CAS  Google Scholar 

  • Gregg NM (1942) Congenital cataract following German measles in the mother. Trans. Ophthal. Soc. Austral 3: 35–46.

    Google Scholar 

  • Hammett FS (1928) Studies in the biology of metals. VII. The influence of lead on the development of the chick embryo. J. Exp. Med. 48: 659–665.

    Article  PubMed  CAS  Google Scholar 

  • Hastings L, Cooper GP, Bornschein RL, Michaelson IA (1977) Behavioral effects of low level neonatal lead exposure. Pharmacol. Biochem. Behav. 1: 37–42.

    Article  Google Scholar 

  • Hernberg S, Nikkanen J (1970) Enzyme inhibition by lead under normal urban conditions. Lancet 1: 63–64.

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Kochen JA (1973) Neurotoxic effects of lead in the chick embryo. Morphologic studies 29: 659–668.

    CAS  Google Scholar 

  • Howard JD, Mottet NK (1986). Effects of methylmercury on the morphogenesis of the rat cerebellum. Teratology 34: 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Jacob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J. Neural Transm. 65: 303–326.

    Article  Google Scholar 

  • Jeste DV, Lohr JB (1989) Hippocampal pathological findings in schizophrenia. Arch. Gen. Psychiat. 46: 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  • Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet 2: 999–1001, 1973.

    Article  Google Scholar 

  • Karnofsky DA, Ridgway LP (1952) Production of injury to the central nervous system of the chick embryos by lead salts. J. Pharmacol. Exp. Ther. 104: 176–186.

    PubMed  CAS  Google Scholar 

  • Kazantis G, 1989, Lead: ancient metal -modern menace, in: “Lead Exposure and Child Development; an International Assessment”, MA Smith, LD Grant, AI Sors, eds., Kluwer Academic Publishers, Lancaster, pp 119–128.

    Chapter  Google Scholar 

  • Klüver H, Bucy P (1939) Preliminary analysis of functions of the temporal lobe in monkeys. Arch. Neurol. Psychol. 42: 979–1000.

    Article  Google Scholar 

  • Kovelman JA, Scheibel AS (1984) A neurohistological correlate of schizophrenia. Biol. Psychiat. 16: 1601–1621.

    Google Scholar 

  • Lancranjan I, Popescu HI, Gavanescu O, Klepsch I, Serbanescu M (1975) Reproductive ability of workmen occupationally exposed to lead. Arch. Environ. Health 30: 396–400.

    PubMed  CAS  Google Scholar 

  • Lögdberg B, Berlin M, Schütz A (1987) Effects of lead exposure on pregnancy outcome and the fetal brain of squirrel monkeys. Scand. J. Work Environ. Health 13: 135–145.

    Article  PubMed  Google Scholar 

  • Lögdberg B, Brun A, Berlin M, Schütz A (1988) Congenital lead encephalopathy in monkeys. Acta Neuropathol. (Berl.) 11: 120–127.

    Google Scholar 

  • Lögdberg B (1988) Alphaxolone-alphadolone acetate for anesthesia of squirrel monkeys of different ages. J. Med. Primatol. 17: 163–167.

    PubMed  Google Scholar 

  • Lögdberg B, 1993a, “Fetal Lead and Brain Development. Studies in a Nonhuman Primate”, Thesis, Lund.

    Google Scholar 

  • Lögdberg B (1993b) Prefrontal neocortical disturbances in mental retardation. J. Intell. Disabil. Res. 37:459–468.

    Google Scholar 

  • Lögdberg B (1994a) Methods for timing of pregnancy and monitoring of fetal body and brain growth in squirrel monkeys. J. Med. Primatol. In press.

    Google Scholar 

  • Lögdberg B (1994b) Lead reduces mitosis of cultured fetal cerebral and placental cells from rat, monkey and human. Submitted for publication.

    Google Scholar 

  • Lögdberg B, Berlin M, Brun A (1994c) Effects of methylmercury on the fetal brain of the squirrel monkey. Submitted for publication.

    Google Scholar 

  • Lögdberg B, Newland C, Sheng Y, Berlin M (1994d) Effects of fetal lead exposure on learning in squirrel monkeys. Submitted for publication.

    Google Scholar 

  • Lögdberg B, Warfvinge K, Hua J, Berlin M. (1994e) Fetal brain disturbances by mercury vapor in monkeys. Submitted for publication.

    Google Scholar 

  • Lögdberg B (1994f) Effects of fetal lead exposure on the postnatal neurobehavioral status in monkeys. To be published.

    Google Scholar 

  • Markovac J, Goldstein GW (1988) Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334:71–73.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto HI, Koya GO, Takeuchi T (1965) Fetal Minamata disease -A neuropathological study of two cases of intrauterine intoxication by a methylmercury compound. J. Neuropath. Exp. Neurol. 24: 563–574.

    Article  PubMed  CAS  Google Scholar 

  • McLardy T (1974) Hippocampal zink and structural deficits in brains from chronic alcoholics and some schizophrenics. J. Orthomol. Psychiatry 4:32–36.

    Google Scholar 

  • McMichael AJ, Vimpani GV, Robertson EF, Baghurst PA, Clark PD. (1986) The Port Pirie cohort study: maternal blood lead and pregnancy outcome. J. Epidemiol. Community Health 40: 18–25.

    Article  PubMed  CAS  Google Scholar 

  • McMichael AJ, Baghurst PA, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ (1988) Port Pirie cohort study: environmental exposure to lead and children’s abilities at the age of four years. N. Engl. J. Med. 319:468–475.

    Article  PubMed  CAS  Google Scholar 

  • Miller CD, Buck WB, Hembrough FB, Cunningham WL (1982) Fetal rat development as influenced by maternal lead exposure. Vet. Hum. Toxicol. 24: 163–166.

    PubMed  CAS  Google Scholar 

  • Miller DT, Etzel RA, McFarland JG, Aster RH, White GC. (1987) Prolonged neonatal autoimmune atrombocytopenic purpura associated with anti-Bak(a). Two cases in siblings. Am. J. Perinatol. 4: 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Miller GD, Massaro TF, Massaro EJ (1990) Interactions between lead and essential elements: a review. Neurotoxicology 11: 99–120.

    PubMed  CAS  Google Scholar 

  • Moore MR, 1980, Prenatal exposure to lead and mental retardation, in: “Low Level Lead Exposure: the Clinical Implications of Current Research”, HL Needleman, ed., Raven Press, New York, NY, pp 53–65.

    Google Scholar 

  • Moore MR, Meredith PA, Goldberg A (1977) A retrospective analysis of blood-lead in mentally retarded children. Lancet 1: 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Moore MR, Goldberg A, Pocock SJ, Meredith A, Stewart IM, MacAnespie H, Lees R, Low A (1982) Some studies of maternal and infant lead exposure in Glasgow. Scot. Med. J. 27: 133–122.

    Google Scholar 

  • Mykkanen HM, Dickerson JWT, Lancaster MC (1979) Effect of age on the tissue distribution of lead in the rat. Toxicol. Appl. Pharmacol. 51: 447–454.

    Article  PubMed  CAS  Google Scholar 

  • Napier JR, Napier PH, 1967, “A Handbook of Living Primates”, Academic Press, London-New York, NY.

    Google Scholar 

  • Nasrallah HA, McCalley-Whitters M, Rauscher FP et al. (1983) A histological study of the corpus callosum in chronic schizophrenia. Psych. Res. 8: 151–160.

    Article  Google Scholar 

  • Nayak BN, Ray M, Persaud TV, Nigli M (1989). Relationship of embryotoxicity to genotoxicity of lead nitrate in mice. Exp. Pathol. 36: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Needleman HL, Schell A, Bellinger D, Leviton A, Allred E (1990) The long-term effects of exposure to low doses of lead in childhood: An 11 year follow-up. N. Engl. J. Med. 322: 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Needleman, H.L.,and Bellinger, D (1991) The health effects of low level exposure to lead. Annu. Rev. Public Health 12:111–140.

    Article  PubMed  CAS  Google Scholar 

  • Newland C, Sheng Y, Lögdberg B, Berlin M (1994) Prenatal exposure to lead or methylmercury impairs aquisition and maintenance of concurrent schedule performance in squirrel monkeys. To be published.

    Google Scholar 

  • Niklowitz WJ, Mandybur TI (1975) Neurofibrillary changes following childhood lead encephalopathy: Case report. J. Neuropathol. Exp. Neurol. 34: 445–455.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki H, Aronson SM, DiMaio DJ, Olvera JE (1963) Acute lead encephalopathy of childhood. Trans. Am. Neurol. Assoc. 88: 248–250.

    PubMed  CAS  Google Scholar 

  • Oliver T (1911) A lecture on lead poisoning and the race. Brit. Med. J. 1: 1096–1098.

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B (1987) Postmortem study of chronic schizophrenic brains. Brit. J. Psychiat. 151:744–752.

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron numbers in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch. Gen. Psychiat. 47: 1023–1028.

    Article  PubMed  CAS  Google Scholar 

  • Palmisano PA, Sneed RC, Cassady G (1969) Untaxed whiskey and fetal lead exposure. J. Pediatr. 75: 869–872.

    Article  PubMed  CAS  Google Scholar 

  • Pentschew A, Garro F (1966) Lead encephalo-myelopathy of the suckling rat and its implications on the porphyrinopathic nervous diseases. Acta. Neuropath. (Berl.) 6: 266–278.

    Article  CAS  Google Scholar 

  • Peters M, Ploog D (1976) Frontal lobe lesions and social behavior in the squirrel monkey: A pilot study. Acta Biol. Med. Germ. 35: 1317–1326.

    PubMed  CAS  Google Scholar 

  • Pindborg S (1945) Om sølverglodsforgifining i Danmark. Ugeskr.Laig. 107: 1–6.

    CAS  Google Scholar 

  • Ploog D (1979) Phonation, Emotion-, Cognition, with Reference to the Brain Mechanisms involved. Brain and Mind, Ciba Found. Series 69, Excerpta Medica, Amsterdam, pp 79–98.

    Google Scholar 

  • Popoff N, Weinberg S, Feigin I (1963) Pathologic observations in lead encephalopathy with special reference to the vascular changes. Neurology 13: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Qazi QH, Medahar C, Yuceoglu AM (1980) Temporary increase in chromosome breakage in an infant prenatally exposed to lead. Hum. Genet. 53: 201–203.

    Article  PubMed  CAS  Google Scholar 

  • Rennert O (1881) Über eine hereditäre Folge der chronischen Bleivergiftung. Arch. Gynäkol. 18: 109–131.

    Article  Google Scholar 

  • Rom WN (1976) Effects of lead on the female and reproduction: A review. Mt. Sinai. J. Med. 43: 542–552.

    CAS  Google Scholar 

  • Rosenblum LA, Coe CL, eds., 1985, “Handbook of Squirrel Monkey Research”, Plenum Press, New York and London.

    Google Scholar 

  • Rosenthal R, Bigelow LB (1972) Quantitative brain measurements in chronic schizophrenia. Brit. J. Psychiat. 121:259–264.

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg SJ, Schnaas L, Cansino-Ortiz S, Perroni-Hernándes E, de la Torre P, Neri-Mendez C, Ortega P, Hidalgo-Loperena H, Svendsgaard D. (1989) Neurobehavioral deficits after low level lead exposure in neonates: the Mexico City pilot study. Neurotoxicol. Teratol. 11: 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Schardein JL, 1985, “Drug and chemical toxicology, Vol 2: Chemically induced birth defects”, Marcel Dekker Inc., New York and Basel.

    Google Scholar 

  • Scheibel AB, Kovelman JA (1981) Disorientation of the hippocampal pyramidal cells and its processes in the schizophrenic patient. Biol. Psychiat. 16: 101–102.

    Google Scholar 

  • Schultz AH (1949) Sex differences in the pelves of primates. Amer. J. Phys. Anthropol. 7: 401–423.

    Article  CAS  Google Scholar 

  • Schwartz J, Otto D (1987) Blood-lead, hearing threshold, and neurobehavioral development in children and youth. Arch. Environ. Health 42: 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Singh NP, Thind IS, Vitale LF, Pawlow M (1976) Lead content of tissues of baby rats born of, and nourished by, lead-poisoned mothers. J. Clin. Med. 87: 273–280.

    CAS  Google Scholar 

  • Singh N, Donovan CM, Hanshaw JB (1978) Neontal lead intoxication in a prenatally exposed infant. J. Pediatr. 93: 1019–1021.

    Article  PubMed  CAS  Google Scholar 

  • Stevens JR (1982) Neuropathology of schizophrenia. Arch. Gen. Psychiat. 39: 1131– 1139.

    Article  PubMed  CAS  Google Scholar 

  • Stollery BT, Broadbent DE, Banks HA, Lee WR (1991) Short term prospective study of cognitive functioning in lead workers. Brit. J. Ind. Med. 48: 739–749.

    CAS  Google Scholar 

  • Talmage-Riggs G, Anschel S (1973) Homosexual behavior and dominance hierarchy in a group of captive female squirrel monkeys. Folia Primat. 19: 61–72.

    Article  CAS  Google Scholar 

  • Thomas JA, Dallenbach FD, Manaroma T (1971) Considerations on the development of experimental lead encephalopathy. Virchows Arch. A. Path. Anat. 352:61–74.

    Article  CAS  Google Scholar 

  • Torrey EF (1992) Are we overestimating the genetic contribution to schizophrenia? Schizophrenia Bull. 18: 159–170.

    Article  CAS  Google Scholar 

  • Uzych L (1985) Teratogenesis and mutagenesis associated with the exposure of human males to lead: a review. Yale J. Biol. Med. 58: 9–17.

    PubMed  CAS  Google Scholar 

  • Valentino M, Coppa G, Ruschioni A (1984) Gradidanza in un’operaia esposta al piombo. Med. Lav. 75: 296–299.

    PubMed  CAS  Google Scholar 

  • Vermande-Van Eck GJ, Meigs JW (1960) Changes in the ovary of the rhesus monkey after chronic lead intoxication. Fertil. Steril. 11: 223–234.

    Google Scholar 

  • Wibberley DG, Khera AK, Edwards JH, Rushton DI (1977) Lead levels in human placentae from normal and malformed births. J. Med. Genet. 14: 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Wide M, Nilsson O (1977) Differential susceptibility of the embryo to inorganic lead during preimplantation in the mouse. Teratology 16: 273–276.

    Article  PubMed  CAS  Google Scholar 

  • Wilson AI (1966) Effects of abnormal lead content of water supplies on maternity patients. The use of a simple industrial screening test in antenatal care in general practice. Scot. Med. J. 11: 73–82.

    PubMed  CAS  Google Scholar 

  • Winder C, Garten LL, Lewis PD (1983) The morphological effects of lead on the developing central nervous system. Neuropathol. Appl. Neurobiol. 9: 87–108.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama K, Araki S, Aono H (1988) Reversability of psychological performance in subclinical lead absorption. Neurotoxicology 9: 405–410.

    PubMed  CAS  Google Scholar 

  • Zook BC, London WT, Wilpizeski CR, Sever JL (1980) Experimental lead paint poisoning in nonhuman primates. J. Med. Primatol. 9: 343–360.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lögdberg, B., Warfvinge, K. (1995). Metal Exposure of the Squirrel Monkey Fetus as a Model of Human Neuropsychiatric Disorders. In: Mednick, S.A., Hollister, J.M. (eds) Neural Development and Schizophrenia. NATO ASI Series, vol 275. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1955-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1955-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5803-9

  • Online ISBN: 978-1-4615-1955-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics