Skip to main content

Affinity Partitioning of Metal Ions in Aqueous Biphasic Systems: Experimental and Theoretical Aspects

  • Chapter
Aqueous Biphasic Separations

Abstract

Even though the first report about aqueous biphasic systems appeared early in this century,1 their regular application to the purification of biomolecules did not start until 1956 when the partial isolation of organelles from cell extracts using a poly(ethylene glycol) (PEG)/potassium phosphate system, was published by Albertsson.2 Over the years, aqueous biphasic systems have been used successfully in several separation schemes and the number of applications has expanded tremendously. Most of the research has been in the separation and purification of proteins, cells, cell organelles, viruses, membrane fragments, and other biological materials.3-7 In addition, aqueous biphasic systems have been used to characterize surface properties of biomolecules such as charge and hydrophobicity.8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.-Å. Albertsson, History of aqueous polymer two phase systems, in: “Partitioning in Aqueous Two Phase Systems: Theory, Methods, Uses and Applications to Biotechnology,” pp. 1–10, H. Walter, D.E. Brooks, and D. Fisher, eds., Academic Press, New York (1985).

    Google Scholar 

  2. P.-Å. Albertsson, Chromatography and partition of cells and cells fragments, Nature 177:771 (1956).

    Article  CAS  Google Scholar 

  3. P.-Å. Albertsson, “Partition of Cell Particles and Macromolecules,” 3rd. ed., Wiley-Interscience, New York, (1986).

    Google Scholar 

  4. W.M. Clark and S.I. Sandler, Affinity partitioning and its potential in biotechnology, Sep. Sci. Technol. 23:761 (1988).

    Article  CAS  Google Scholar 

  5. “Partitioning in Aqueous Two Phase Systems: Theory, Methods, Uses and Applications to Biotechnology,” H. Walter, D.E. Brooks, and D. Fisher, eds., Academic Press, New York (1985).

    Google Scholar 

  6. W. Miller, Partitioning of nucleic acids, in: “Partitioning in Aqueous Two Phase Systems: Theory, Methods, Uses and Applications to Biotechnology,” pp. 227–266, H. Walter, D.E. Brooks, and D. Fisher, eds., Academic Press, New York (1985).

    Google Scholar 

  7. H. Goubran-Botros, A.O. Birkenmeier, G. Koppershlager, and M.A. Vijayalakshmi, Immobilized metal ion affinity partitioning of cells in aqueous two-phase systems: erythrocytes as a model, Biochim. Biophys. Acta 1074:69 (1991)

    Article  CAS  Google Scholar 

  8. A.D. Diamond and J.T. Hsu, Aqueous two-phase systems for biomolecule separation, in: “Advances in Biochemical Engineering/Biotechnology,” Vol 47., pp. 89–135, A. Fiechter, ed., Springer-Verlag, Berlin (1992).

    Google Scholar 

  9. G. Koppershlager and G. Johansson, Affinity partitioning with polymer-bound cibacron blue F3G-A for rapid large-scale purification of phosphofructokinase from baker’s yeast, Anal. Biochem. 124:117 (1981).

    Article  Google Scholar 

  10. K.A. Sharp, M. Yalpani, S.J. Howard, and D.E. Brooks, Synthesis and application of a poly(ethylene glycol)-antibody affinity ligand for cell separations in aqueous polymer two phase systems, Anal. Biochem. 154:110 (1986).

    Article  CAS  Google Scholar 

  11. V.P. Shanbhag and G. Johansson, Interaction of human serum albumin with fatty acids, role of anionic groups studied by affunty partition, Eur. J. Biochem. 93:363 (1979).

    Article  CAS  Google Scholar 

  12. J.M. Harris, Laboratory synthesis of polyethylene glycol derivatives, J. Macromol. Sci. C-25:325 (1985).

    Google Scholar 

  13. J.M. Harris and M. Yalpani, Polymer-ligands used in affinity partitioning and their synthesis, in: “Partitioning in Aqueous Two Phase Systems: Theory, Methods, Uses and Applications to Biotechnology,” pp. 589–626, H. Walter, D.E. Brooks, and D. Fisher, eds., Academic Press, New York (1985).

    Google Scholar 

  14. G.E. Wuenschell, E. Naranjo, and F.H. Arnold, Aqueous two phase metal affinity extraction of heme proteins, Bioprocess Eng. 5:199 (1990).

    Article  CAS  Google Scholar 

  15. B.H. Chung and F.H. Arnold, Metal-affinity partitioning of phosphoproteins in PEG/dextran two phase systems, Biotechnol. Lett. 13:615 (1991).

    Article  CAS  Google Scholar 

  16. T.I. Zvarova, V.M. Shkinev, G.A. Vorob’eva, B.Ya. Spivakov, and Yu.A. Zolotov, Liquid-liquid extraction in the absence of usual organic solvents: application of two phase aqueous systems based on a water soluble polymer, Mikrochim. Acta III:449 (1984).

    Article  Google Scholar 

  17. R.D. Rogers, A.H. Bond, and C.B. Bauer, Metal ion separations in polyethylene glycol-based aqueous biphasic systems, Sep. Sci. Technol. 28:1091 (1993).

    Article  Google Scholar 

  18. N.P. Molochnikova, V.M. Shkinev, and B.F. Myasoedov, Two phase aqueous systems based on poly(ethylene glycol) for extraction separation of actinides in various media, Solvent Extr. Ion Exch. 10:697 (1992).

    Article  CAS  Google Scholar 

  19. R.D. Rogers, A.H. Bond, and C.B. Bauer, Aqueous biphase systems for liquid/liquid extraction of f-elements utilizing polyethylene glycols, Sep. Sci. Technol. 28:139 (1993).

    Article  CAS  Google Scholar 

  20. R.D. Rogers, C.B. Bauer, and A.H. Bond, Novel polyethylene glycol-based aqueous biphasic systems for the extraction of strontium and cesium, Sep. Sci. Technol. in press (1994).

    Google Scholar 

  21. R.D. Rogers, A.H. Bond, and C.B. Bauer, The crown ether extraction of group 1 and 2 cations in polyethylene glycol-based aqueous biphasic systems at high alkalinity, Pure Appl. Chem. 65:567 (1993)

    Article  CAS  Google Scholar 

  22. A.F. Buckman and M. Mon, Functionalyzation of poly(ethylene glycol) and monomethoxy poly(ethylene glycol),Makromol. Chem. 182:1379 (1981).

    Article  Google Scholar 

  23. A.F. Buckman, M. Mon, and M.R. Kula, Preparation of technical grade polyethylene glycol (PEG) (Mr 20,000)-N6-(2-Aminoethyl)-NADH by a procedure adaptable to large scale synthesis, Biotechnol. Appl. Biochem. 9:269 (1987).

    Google Scholar 

  24. J. Porath, IMAC-immobilized metal ion affinity based chromatography, Trends Anal. Chem. 7:254 (1988).

    Article  CAS  Google Scholar 

  25. G. Birkenmeier, M.A. Vijayalakshmi, T. Stigbrand, and G. Kopperschläger, Immobilized metal ion affinity partitioning (IMAP), a method for metal protein interaction and partitioning of proteins in aqueous two phase systems, J. Chromatogr. 539:267 (1991).

    Article  CAS  Google Scholar 

  26. J. Porath, Immobilized metal affmity chromatography, Protein Expression Purif. 3:263 (1992).

    Article  CAS  Google Scholar 

  27. P.A. Aguifiaga, “Polymer Modification with Metal Chelates and Their Application to the Recovery of Metals and Biocompounds from Aqueous Solutions,” Masters thesis, University of Arizona (1992).

    Google Scholar 

  28. P.A. Aguifiaga, C.M. Téllez, and R. Guzmán, Synthesis of soluble modified chelating polymers with affinity for metal ions, Synthetic Communications submitted (1994)

    Google Scholar 

  29. N.L. Abbot, D. Blankschtein, and T.A. Hatton, On protein partitioning in two-phase systems, Bioseparation 1:195 (1990).

    Google Scholar 

  30. J.N. Baskir, T.A. Hatton, and U.W. Suter, Protein partitioning in two phase aqueous polymer systems, Biotechnol. Bioeng. 34:541 (1989).

    Article  CAS  Google Scholar 

  31. P.-Å. Albertsson, Interaction between biomolecules studied by phase partition, Methods Biochem. Anal. 29:1 (1983).

    Article  CAS  Google Scholar 

  32. P.J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys. 9:660 (1941).

    Article  CAS  Google Scholar 

  33. M.L. Huggins, Solutions of long chain compounds, J. Chem. Phys. 9:440 (1941).

    Article  CAS  Google Scholar 

  34. E. Edmond and A.G. Ogston, An approach to the study of phase separation in ternary aqueous systems, Biochem. J. 109:569 (1968).

    CAS  Google Scholar 

  35. R.S. King, H.W. Blanch, and J.M. Prausnitz, Molecular thermodynamics of aqueous two phase systems for bioseparations, AIChE J. 34:1585 (1988).

    Article  CAS  Google Scholar 

  36. D.E. Brooks, K.A. Sharp, and D. Fisher, Theoretical aspects of partitioning, in: “Partitioning in Aqueous Two Phase Systems: Theory, Methods, Uses and Applications to Biotechnology,” pp. 11–84, H. Walter, D.E. Brooks, and D. Fisher, eds., Academic Press, New York (1985).

    Google Scholar 

  37. A.D. Diamond and J.T. Hsu, Correlation of protein partitioning in aqueous polymer two phase systems, J. Chromatogr. 513:137 (1990).

    Article  CAS  Google Scholar 

  38. D. Forciniti, C.K. Hall, and M.R. Kula, Temperature dependence of the partition coefficient of proteins in aqueous two phase systems, Bioseparation 1:227 (1991).

    Google Scholar 

  39. N.L. Abbot, D. Blankschtein, and T.A. Hatton, Protein partitioning in two phase aqueous polymer systems. 1. Novel physical pictures and a scaling thermodynamic formulation, Macromol. 24:4334 (1991).

    Article  Google Scholar 

  40. J.N. Baskir, T.A. Hatton, and U.W. Suter, Thermodynamics of the separation of biomaterials in two phase aqueous polymer systems: effect of the phase forming polymer, Macromol. 20:1300 (1987).

    Article  CAS  Google Scholar 

  41. P.-Å. Albertsson, General aspects of aqueous two phase partition, in: “Separations Using Aqueous Two Phase Systems,” pp. 3–5, D. Fisher and I.A. Sutherland, eds., Plenum, New York (1989).

    Chapter  Google Scholar 

  42. M.A. Eiteman and J.L. Gainer, Predicting partition coefficients in polyethylene glycol-potassium phosphate aqueous two phase systems, J. Chromatogr. 586:341 (1991).

    Article  CAS  Google Scholar 

  43. B.Y. Zaslaysky, L.M. Miheeva, and S.V. Rogozhin, Parameterization of hydrophobic properties of aqueous polymeric biphasic systems and water-organic solvent systems, J. Chromatogr. 212:13 (1981).

    Article  Google Scholar 

  44. M.A. Eiteman and J.L. Gainer, Prediction of partition coefficients for peptides in aqueous two phase systems, in: “Chromatographic and Membrane Processes in Biotechnology,” pp. 323–333, C.A. Costa and J.S. Cabral, eds., Kluwer Academic, Dordrecht (1991).

    Chapter  Google Scholar 

  45. M.A. Eiteman and J.L. Gainer, A correlation for predicting partition coefficients in aqueous two phase systems, Sep. Sci. Technol. 27:313 (1992).

    Article  CAS  Google Scholar 

  46. M.A. Eiteman, Predicting partition coefficients of multicharged solutes in aqueous two phase systems, J. Chromatogr. 668:21 (1994)

    Article  CAS  Google Scholar 

  47. S.D. Flanagan and J.H. Barondes, Affinity partitioning, J. Biol. Chem. 250:1484 (1975).

    CAS  Google Scholar 

  48. A. Cordes, J. Flossdorf, and M.R. Kula, Affinity partitioning: development of mathematical model describing behavior of biomolecules in aqueous two phase systems, Biotechnol. Bioeng. 30:514 (1987).

    Article  CAS  Google Scholar 

  49. A. Carlson, Factors influencing the use of aqueous two phase partitioning for protein purification, Sep. Sei. Technol. 23:785 (1988).

    Article  CAS  Google Scholar 

  50. J.N. Baskir, T.A. Hatton, and U.W. Suter, Thermodynamics of the separation of biomaterials in two phase aqueous polymer systems: comparison of lattice model to experimental data, J. Phys. Chem. 93:969 (1989).

    Article  CAS  Google Scholar 

  51. J.P. Chen and J.T. Jen, Affinity partition of acid proteases in aqueous two-phase systems: modeling and protein purification, J. Chem. Eng. Japan 26:669 (1993).

    Article  CAS  Google Scholar 

  52. S.-S. Sufi and F.H. Arnold, A mathematical model for metal affinity protein partition, Biotechnol. Bioeng. 35:682 (1990).

    Article  Google Scholar 

  53. S.-S. Suh, M.E. Van Dam, G.E. Wuenschel, S. Plunkett, and F.H. Arnold, Novel metal affinity protein separations, in: “Protein Purification: From Molecular Mechanisms To Large-Scale Processes,” ACS Symposium Series, vol. 427, pp. 139–149, M.R. Ladish, R.C. Willson, C.C. Painton, and S.E. Builder, eds., American Chemical Society, Washington, DC (1990).

    Chapter  Google Scholar 

  54. J.W. Wong, R.L. Albright, and N.L. Wang, Immobilized metal ion affinity chromatography (IMAC): chemistry and biochemistry applications, Sep. Puri!: Methods 20:49 (1991).

    Article  CAS  Google Scholar 

  55. C.M. Téllez, H. Cabezas, Jr., and R. Guzmán, Modeling affinity partitioning of metal ions in aqueous polymer/salt two-phase systems, in preparation (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guzmán, R., Téllez, C.M. (1995). Affinity Partitioning of Metal Ions in Aqueous Biphasic Systems: Experimental and Theoretical Aspects. In: Rogers, R.D., Eiteman, M.A. (eds) Aqueous Biphasic Separations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1953-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1953-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5802-2

  • Online ISBN: 978-1-4615-1953-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics