Two-Phase Aqueous Surfactant Systems for the Purification of Biomaterials

  • C.-L. Liu
  • Y. J. Nikas
  • D. Blankschtein


We present a review of recent theoretical and experimental work aimed at investigating the potential use of two-phase aqueous surfactant systems for the purification of hydrophilic proteins by liquid-liquid extraction techniques. The systems studied include (1) a two-phase aqueous nonionic surfactant (n-decyl tetra(ethylene oxide), C 10 E 4) system, and (2) a two-phase aqueous zwitterionic surfactant (dioctanoyl phosphatidylcholine, C 8-lecithin) system. The theoretical formulation assumes that excluded-volume interactions between the hydrophilic proteins and the surfactant micelles present in the solution play the dominant role in determining the experimentally observed partitioning behavior, and it incorporates (i) the self-assembling character of micelles, which allows them to grow into long, cylindrical microstructures with varying temperature and/or surfactant concentration, and (ii) a broad polydisperse distribution of micellar sizes. The theoretically predicted protein partitioning is compared with experimental measurements of the partitioning of several hydrophilic proteins, including cytochrome c, soybean trypsin inhibitor, ovalbumin, bovine serum albumin, and catalase, in two-phase aqueous C 10 E 4 and C 8-lecithin systems, and is found to be in good agreement. The results of this investigation suggest that two-phase aqueous surfactant systems of the type considered in this paper are potentially useful as extractant phases for the liquid-liquid extraction of proteins and other biomaterials.


Ethylene Oxide Surfactant Molecule Surfactant System Cloud Point Extraction Soybean Trypsin Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bordier, Phase separation of integral membrane proteins in Triton X-114 solution, J. Biol. Chem.,256:1604 (1981).Google Scholar
  2. 2.
    J.G. Pryde, Triton X-114: a detergent that has come in from the cold, TIBS, 5:160 (1986).Google Scholar
  3. 3.
    J.G. Pryde and J.H. Phillips, Fractionation of membrane proteins by temperature-induced phase separation in Triton X-I I4, Biochem. J.,233:525 (1986).Google Scholar
  4. 4.
    C. Holm, G. Fredrikson, and P. Belfrage, Demonstration of the amphiphilic character of hormone-sensitive lipase by temperature-induced phase separation in Triton X-114 and charge-shift electrophoresis, J. Biol. Chem., 261:15659 (1986).Google Scholar
  5. 5.
    R.A. Ramelmeier, G.C. Terstappen, and M.-R. Kula, The partitioning of cholesterol oxidase in Triton X-114-based aqueous two-phase systems, Bioseparation, 2:315 (1991).Google Scholar
  6. 6.
    T. Saitoh and W.L. Hinze, Concentration of hydrophobic organic compounds and extraction of protein using alkylammoniosulfate zwitterionic surfactant mediated phase separations (cloud point extractions), Anal. Chem., 63:2520 (1991).CrossRefGoogle Scholar
  7. 7.
    T. Saitoh and W.L. Hinze, Use of surfactant-mediated phase separation (cloud point extraction) with affinity ligands for the extraction of hydrophilic proteins, Preprint (1992).Google Scholar
  8. 8.
    Y.J. Nikas, C.-L. Liu, T. Srivastava, N.L. Abbott, and D. Blankschtein, Protein partitioning in two-phase aqueous nonionic micellar solutions, Macromolecules, 25:4794 (1992).CrossRefGoogle Scholar
  9. 9.
    C.-L. Liu, Y.J. Nikas, and D. Blankschtein, Partitioning of proteins using two-phase aqueous surfactant systems, AIChE J., in press (1994).Google Scholar
  10. 10.
    P.-Å. Albertsson, Partition of Cell Particles and Macromolecules, Wiley-Interscience, New York (1986).Google Scholar
  11. 11.
    H. Walter, D.E. Brooks, and D. Fisher, ed., Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology, Academic Press, Orlando (1985).Google Scholar
  12. 12.
    D. Fisher and I.A. Sutherland, ed., Separations Using Aqueous Phase Systems: Applications in Cell Biology and Biotechnology, Plenum Press, New York (1989).Google Scholar
  13. 13.
    H. Walter, G. Johansson, and D.E. Brooks, Partitioning in aqueous two-phase systems: recent results, Anal. Biochem.,197:1 (1991).CrossRefGoogle Scholar
  14. 14.
    N.L. Abbott, D. Blankschtein, and T.A. Hatton, On protein partitioning in two-phase aqueous polymer systems, Bioseparation, 1:191 (1990).Google Scholar
  15. 15.
    N.L. Abbott, D. Blankschtein, and T.A. Hatton, Protein partitioning in two-phase aqueous polymer systems.Google Scholar
  16. 15.1
    N.L. Abbott, D. Blankschtein, and T.A. Hatton Novel physical pictures and a scaling-thermodynamic formulation, Macromolecules, 24:4334 (1991);CrossRefGoogle Scholar
  17. 15.2
    N.L. Abbott, D. Blankschtein, and T.A. Hatton On the free energy of mixing globular colloids and flexible polymers, Macromolecules, 25:3917 (1992);CrossRefGoogle Scholar
  18. 15.3
    N.L. Abbott, D. Blankschtein, and T.A. Hatton A neutron scattering investigation of the polymer solution structure and protein-polymer interactions, Macromolecules, 25:3932 (1992);CrossRefGoogle Scholar
  19. 15.4
    N.L. Abbott, D. Blankschtein, and T.A. Hatton Proteins in solutions of entangled polymers, Macromolecules, 25:5192 (1992);CrossRefGoogle Scholar
  20. 15.5
    N.L. Abbott, D. Blankschtein, and T.A. Hatton Decoupling of the effects of protein concentration, salt type, and polymer molecular weight, Macromolecules, 26:825 (1993).CrossRefGoogle Scholar
  21. 16.
    D. Blankschtein, G.M. Thurston, and G.B. Benedek, Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions, J. Chem. Phys., 85:7268 (1986).CrossRefGoogle Scholar
  22. 17.
    S. Puvvada and D. Blankschtein, Molecular-thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants, J. Chem. Phys., 92:3710 (1990).CrossRefGoogle Scholar
  23. 18.
    B. Lindman and H. Wennerström, Nonionic micelles grow with increasing temperature, J. Phys. Chem., 95:6053 (1991).CrossRefGoogle Scholar
  24. 19.
    A. Helenius and K. Simons, The binding of detergents to lipophilic and hydrophilic proteins, J. Biol. Chem., 247:3656 (1972).Google Scholar
  25. 20.
    S. Makino, J.A. Reynolds, and C. Tanford, The binding of deoxycholate and Triton X-100 to proteins, J. Biol. Chem., 248:4926 (1973).Google Scholar
  26. 21.
    L.D. Landau and E.M. Lifshitz, Statistical Physics, 2nd ed., Vol. 1, Pergamon Press, Oxford (1980).Google Scholar
  27. 22.
    A. Naor, S. Puvvada, and D. Blankschtein, An analytical expression for the free energy of micellization, J. Phys. Chem., 96:7830 (1992).CrossRefGoogle Scholar
  28. 23.
    C. Sarmoria and D. Blankschtein, Conformational characteristics of short poly(ethylene oxide) chains terminally attached to a wall and free in aqueous solution, J. Phys. Chem., 96:1978 (1992).CrossRefGoogle Scholar
  29. 24.
    P.L. Dubin and J.M. Principi, Optimization of size-exclusion separation of proteins on a Superose column, J. Chromatography, 479:159 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • C.-L. Liu
    • 1
  • Y. J. Nikas
    • 1
  • D. Blankschtein
    • 1
  1. 1.Department of Chemical Engineering and Center for Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations