Skip to main content

Poly(Etyhlene Glycol)-Protein Interaction in Salt Containing Aqueous Solutions

  • Chapter
Aqueous Biphasic Separations

Abstract

Poly(ethylene glycol) (PEG) is a common polymer in aqueous two-phase systems, and it is also used in other fields of biology, e.g. (i) protein precipitation, (ii) for creation of biocompatible surfaces, (iii) for in vitro stabilization of proteins, and (iv) as a refolding enhancer. Although a general picture of the features governing protein partition in PEG/salt aqueous two-phase systems can be given, the molecular mechanisms behind it are poorly understood. There is need for partition experiments performed with well characterized model peptides and proteins. We have developed a concept where we are using genetic engineering to modify a staphylococcal protein A derivative, ZZ0, with respect to its content of different short peptide units, e.g. like AlaTrpTrpPro and AlaIleIlePro. We are particularly interested in the use of these protein derivatives and free short peptides for the study of the molecular mechanisms involved in the PEG-protein interaction. Several techniques can be used to probe PEG-free peptide and PEG-protein interactions, not only in bulk solution, but also at solid surfaces. In this paper we will describe results from partition in PEG/potassium phosphate aqueous two-phase systems, and interaction with PEG coated surfaces. For the latter measurements we have applied: (i) retention studies on packed bed chromatography columns, and (ii) ellipsometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Nilsson, T. Moks, B. Jansson, L. Abrahmsén, A. Elmblad, E. Holmgren, C. Henrichson, C. T.A. Jones, and M. Uhlén, A synthetic IgG-binding domain based on the staphylococcal protein A, Protein Engineering, 1:107 (1987).

    Article  CAS  Google Scholar 

  2. C. Ljungquist, A. Breitholtz, H. Brink-Nilsson, T. Moks, M. Uhlén, and B. Nilsson, Immobilization and affinity purification of recombinant proteins using histidine peptide fusions, Eur. J. Biochem., 186:563 (1989).

    Article  CAS  Google Scholar 

  3. H. Gouda, H. Torigoe, A. Saito, M. Sato, Y. Arata, and I. Shimada, Three dimensional solution structure of the B domain of staphylococcal protein A, Biochem., 31:9665 (1992).

    Article  CAS  Google Scholar 

  4. K. Köhler, C. Ljungquist, A. Kondo, A. Veide, and B. Nilsson, Engineering proteins to enhance their partition coefficients in aqueous two-phase systems, Bio/Technology, 9:642 (1991).

    Article  Google Scholar 

  5. C. Hassinen, K. KöhIer, and A. Veide, Poly(ethylene glycol) - potassium phosphate aqueous two-phase systems: Insertion of short peptide units into a protein and the effects on partitioning, J.ChromatographyA, 668:121 (1994).

    Article  CAS  Google Scholar 

  6. A. Veide, “Aqueous Two-Phase Partitioning: A Technique for Large Scale Purification of Microbial Proteins,” PhD Thesis, Royal Institute of Technology, Stockholm, ISBN 91–7170-910-X (1987).

    Google Scholar 

  7. A.D. Diamond, X. Lei, and J.T. Hsu, Reversing the amino acid sequence of a dipeptide changes its partition in an aqueous two-phase system, Biotechnol. Technol., 3:271 (1989).

    Article  CAS  Google Scholar 

  8. A. Kalnins, K. Otto, U. RĂĽther, and B. MĂĽller-Hill, Sequence of the lac Z gene of Escherichia coli, EMBO J., 2:593 (1983).

    CAS  Google Scholar 

  9. S.N. Timasheff and T. Arakawa, Stabilization of protein structure by solvents, in: “Protein Structure: a Practical Approach,” T.E. Creighton, ed., IRL Press, Oxford (1990).

    Google Scholar 

  10. J.L. Cleland and T.W. Randolph, Mechanism of poly(ethyleneglycol) interaction with the molten globule folding intermediate of bovine carbonic anhydrase B, J. Biol. Chem., 267:3147 (1992).

    CAS  Google Scholar 

  11. J.L. Cleland, S.E. Builder, J.R. Swartz, M. Winkler, J.Y. Chang and D.I.C. Wang, Poly(ethyleneglycol) enhanced protein refolding,Bio/Technology, 10:1013 (1992).

    Article  CAS  Google Scholar 

  12. G. Johansson, Effects of different ions on the partition of proteins in aqueous dextran-poly(ethylene glycol) two-phase systems, in: “Proceedings of the International Solvent Extraction Conference 1971,” Society of Chemical Industry, London (1971).

    Google Scholar 

  13. F.E. Bailey Jr. and J.V. Koleske, “Poly(ethylene oxide),”Academic Press, New York (1976).

    Google Scholar 

  14. F.W. Stone and J.J. Stratta, 1,2-epoxide polymers, in: “Encyklopedia of Polymer Science and Technology,” H. F. Mark, G. Gaylord, and N.M. Biales, ed., Wiley Interscience, New York (1966).

    Google Scholar 

  15. M. Laskowski Jr., Measurment of accessibility of protein chromophores by solvent perturbation of their ultraviolet spectra, Federation Proc., 25:20 (1966).

    CAS  Google Scholar 

  16. K.C. Ingham, Poly(ethyleneglycol) in aqueous solution: Solvent perturbation and gel filtration studies, Arch. Biochem. Biophys., 184:59 (1977).

    Article  CAS  Google Scholar 

  17. D. Hallén, E. Qvamström, and I. Wadsö, A multiple sample microcalorimeter for dissolving solids. In manuscript.

    Google Scholar 

  18. C. Brink, E. Ă–sterberg, K. Holmberg, and F. Tiberg, A method to obtain dense grafting of poly(ethylene glycol) or polysaccharide to polystyrene, Colloids Surfaces, 66:149 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Veide, A., Hassinen, C., Hallén, D., Eiteman, M., Lassen, B., Holmberg, K. (1995). Poly(Etyhlene Glycol)-Protein Interaction in Salt Containing Aqueous Solutions. In: Rogers, R.D., Eiteman, M.A. (eds) Aqueous Biphasic Separations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1953-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1953-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5802-2

  • Online ISBN: 978-1-4615-1953-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics