Skip to main content

Relevance of Opioid Bimodality to Tolerance/Dependence Formation

From Transmitter Release to Second Messenger Formation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 373))

Abstract

It is very well established - indeed dogma - that the predominant effect of opioids in the central nervous system is to depress neuronal function and inhibit the release of neurotransmitters (see[1]). When excitatory opioid actions are observed, they are usually attributed to disinhibition[2], i.e., opioids are known to inhibit inhibitory neurons and thus cause excitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tortella FC: Endogenous opioid peptides and epilepsy: quieting the seizing brain? Trends in Pharmacological Sciences 1988;9:366–372.

    Article  PubMed  CAS  Google Scholar 

  2. Zieglgansberger W, French W, Siggins GR, Bloom FE:Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 1979;205:415–417.

    Article  PubMed  CAS  Google Scholar 

  3. Schultzberg M, Dreyfus CF, Gershon MD, Hokfelt T, Elde R, Nilsson G, Said S, Goldstein M:Vip-,substance P-, and somatostatin-like immunoreactivity in neurons intrinsic to the intestine: immunohistochemical evidence from organotypic tissue culture. Brain Res 1978;155:239–248.

    Article  PubMed  CAS  Google Scholar 

  4. Fumess JB, Costa M, Miller RJ:Distribution and projections of nerves with enkephalin-like immunoreactivity in the guinea pig small intestine. Neuroscience 1983;8:653–664.

    Article  Google Scholar 

  5. Vincent SR, Dalssaard CJ, Schultzberg M, Hokfelt T, Christensson I, Terenius L:Dynorphin-immunoreactive neurons in the autonomic nervous system. Neuroscience 1984;11:973–987.

    Article  PubMed  CAS  Google Scholar 

  6. Chavkin C, Goldstein A:Demonstration of a specific dynorphin receptor in guinea pig ileum myenteric plexus. Nature (Lond) 1981;291:591–593.

    Article  CAS  Google Scholar 

  7. Leslie FM, Chavkin C, Cox BM:Opioid binding properties of brain and peripheral tissue: evidence for heterogeneity in opioid ligand binding sites. J Pharm Exp Ther 1981;214:395–402.

    Google Scholar 

  8. Lord JA, Waterfield AA, Hughes J, Kosterlitz HW:Endogenous opioid peptides: multiple agonists and receptors. Nature (Lond) 1977;267:495–499.

    Article  CAS  Google Scholar 

  9. Kumar MSA, Haney M, Becker T, Thompson ML, Kream R, Miczek K:Effect of early exposure to delta9-tetrahydrocannabinol on the levels of opioid peptides, gonadotropin, and substance Pin the adult male rat brain. Brain Research 1990;525:78–83.

    Article  PubMed  CAS  Google Scholar 

  10. Xu H, Smolens I, Gintzler AR:Opioids can enhance and inhibit the electrically evoked release of methionine-enkephalin. Brain Research 1989;504:36–42.

    Article  PubMed  CAS  Google Scholar 

  11. Glass J, Chan W, Gintzler AR:Direct analysis of the release of methionine-enkephalin from guinea pig myenteric plexus: modulation by endogenous opioids and exogenous morphine. J. Pharmacol. Exp. Ther. 1986;239, No. 3:742–747.

    PubMed  CAS  Google Scholar 

  12. North RA:Electrophysiology of the enteric nervous system. Neuroscience 1982;7:315–325.

    Article  PubMed  CAS  Google Scholar 

  13. Gintzler AR, Chan WC, Glass J:Evoked release of methionine-enkephalin from tolerant/dependent enteric ganglia: Paradoxical dependence on morphine. Proc. Nat’l. Acad. Sci. U.S.A. 1987;84:2537–2539.

    Article  CAS  Google Scholar 

  14. Higashi H, Shinnick-Gallagher P, Gallagher JP:Morphine enhances and depresses Ca2+-dependent responses in visceral primary afferent neurons. Brain Research 1982;251:186–191.

    Article  PubMed  CAS  Google Scholar 

  15. Tokimasa T, Morita K, North RA:Opiates and clonidine prolong calcium-dependent after-hyperpolarizations. Nature 1981;294:162–163.

    Article  PubMed  CAS  Google Scholar 

  16. Hirai K, Katayama Y:Methionine-enkephalin presynaptically facilites and inhibits bullfrog sympathetic ganglionic transmission. Brain Research 1988;448:299–307.

    Article  PubMed  CAS  Google Scholar 

  17. Katayama Y, Nishi S:Sites and mechanisms of actions of enkephalin in the feline parasympathetic ganglion. J Physiol (Lond) 1984;351:111–121.

    CAS  Google Scholar 

  18. Haas HL, Ryall RW:Is excitation by enkephalin of hippocampal neurons in the rat due to presynaptic facilitation or to disinhibition? J. Physiol. (Lond.) 1980;308:315–330.

    CAS  Google Scholar 

  19. Crain SM, Shen K-F:Opioids can evoke direct receptor-mediated excitatory effects on sensory neurons. Trends in Pharmacological Sciences 1990;11:77–81.

    Article  PubMed  CAS  Google Scholar 

  20. Beani L, Bianchi C, Siniscalchi A:The effect of naloxone on opioid-induced inhibition and facilitation of acetylcholine release in brain slices. Brit. J. Pharmacol. 1982;76:393–401.

    Article  CAS  Google Scholar 

  21. Gintzler AR, Xu H:Different G proteins mediate the opioid inhibition or enhancement of evoked [5-methioninelenkephalin release. Proc. Nat’l. Acad. Sci. U.S.A. 1991;88:4741–4745.

    Article  CAS  Google Scholar 

  22. Katada T, Ui M:ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J. Biol. Chem. 1982;257:7210–7216.

    PubMed  CAS  Google Scholar 

  23. Gill DM, Meren R:ADP-ribosylation of menbrane proteins catalyzed cholera toxon: basis of the activation of adenylate cyclase. Proc. Nat’l. Acad. Sci. U.S.A. 1978;75:3050–3054.

    Article  CAS  Google Scholar 

  24. Stadel JM, Lefkowitz RJ:Differential effects of cholera toxin on guanine nucleotide regulation of B-adrenergic agonist high affinity binding and adenylate cyclase activation in frog erythrocyte membranes. J. Cyclic Nucleotide Res. 1981;7:363–374.

    PubMed  CAS  Google Scholar 

  25. Cassell D, Selinger Z:Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc. Nat’l. Acad. Sci. U.S.A. 1977;74:3307–3311.

    Article  Google Scholar 

  26. Wang L, Gintzler AR:Bimodal opioid regulation of cAMP formation: implications for positive and negative coupling of opiate receptors to adenylyl cyclase. J. Neurochem. 1726–1730, 1994.

    Google Scholar 

  27. Tang WJ, Gilman G:Type-specific regulation of adenylate cyclase by G protein beta gamma subunits. Science 1991;254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  28. Tang W-J, Krupinski J, Gilman AG:Expression and characterization of calmodulin-activated (type 1) adenylylcyclase. J. Biol. Chem. 1991;266 No. 13:8595–8603.

    PubMed  CAS  Google Scholar 

  29. Xu H, Gintzler AR:Opioid enhancement of evoked [Met5]enkephalin release requires activation of cholinergic receptors: possible involvement of intracellular calcium. Proc. Nat’l. Acad. Sci. 1992;89:1978–1982.

    Article  CAS  Google Scholar 

  30. Sublette E, Gintzler AR:Stimulus frequency and intensity: critical determinants ofopioid enhancement or inhibition of evoked methionine-enkephalin release. Brain Research 1992;599:165–170.

    Article  PubMed  CAS  Google Scholar 

  31. Wang L, Gintzler AR: Morphine tolerance and physical dependence: reversal of opioid inhibition of stimulated cAMP formation to enhancement. J. Neurochem. 1994, In Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gintzler, A.R. (1995). Relevance of Opioid Bimodality to Tolerance/Dependence Formation. In: Sharp, B.M., Eisenstein, T.K., Madden, J.J., Friedman, H. (eds) The Brain Immune Axis and Substance Abuse. Advances in Experimental Medicine and Biology, vol 373. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1951-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1951-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5801-5

  • Online ISBN: 978-1-4615-1951-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics