Advertisement

Analysis of Multiparticle Correlations and the Wavelet Transform

  • Peter Lipa
  • Martin Greiner
  • Peter Carruthers
Part of the NATO ASI Series book series (NSSB, volume 346)

Abstract

The analysis of multiparticle correlations by means of factorial moments1 and refinements thereof,2 amounts to counting the abundance of q-tuples of particles in phase space in dependence of the “size” of the tuple. The human brain, however, follows a different strategy to estimate correlations of point patterns: it organizes points/particles in densely populated regions into (hard to quantify) “clumps” or “clusters” and unpopular regions into “voids” if one looks closer into a particular “clump” it may (or may not) again be organized into “clusters” and “voids”, but now with respect to the higher (smooth) background density of the bigger “parent-clump”, and so on.

Keywords

Detail Function Multiresolution Analysis Correlation Density Quadrature Mirror Filter Multiresolution Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bialas and R. Peschanski, Nucl. Phys. B273 (1986) 70Google Scholar
  2. A. Bialas and R. Peschanski, Nucl. Phys. B308 (1988) 857.ADSCrossRefGoogle Scholar
  3. 2.
    H.C. Eggers, P. Lipa, P. Carruthers and B. Buschbeck, Phys. Rev. D 48 (1993) 2040.ADSCrossRefGoogle Scholar
  4. 3.
    C. Meneveau and K.R. Sreenivasan, Phys. Rev. Lett. 59 (1987) 1424.ADSCrossRefGoogle Scholar
  5. 4.
    M. Greiner, P. Lipa and P. Carruthers, “Wavelet Correlations in the p-Model”, preprint HEPHYPUB-587/93 and AZPH-TH/93-23, submitted to Phys. Rev. E. Google Scholar
  6. 5.
    S. Mallat, IEEE Trans. Pattern Anal. and Machine Intell. 11 (1989) 674.ADSMATHCrossRefGoogle Scholar
  7. 6.
    I. Daubechies, Comm. Pure Appl. Math., 41 (1988) 909; “Ten Lectures on Wavelets”, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992).MathSciNetMATHCrossRefGoogle Scholar
  8. 7.
    Y. Meyer, “Wavelets and Operators”, Cambridge University Press, New York (1992); “Wavelets: Algorithms and Applications”, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Peter Lipa
    • 1
    • 2
  • Martin Greiner
    • 3
  • Peter Carruthers
    • 1
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA
  2. 2.Institut für Hochenergiephysik der Österreichischen Akademie der WissenschaftenWienAustria
  3. 3.Institut für Theoretische Physik der Justus-Liebig-UniversitätGiessenGermany

Personalised recommendations