New Developments in Correlation Studies

  • B. Buschbeck
  • P. Lipa
  • F. Mandl
Part of the NATO ASI Series book series (NSSB, volume 346)

Abstract

By using the recently developed technique of correlation integrals we measured correlation functions over a wide range of invariant mass 50 GeV ≥ M ≥ 0.2809 GeV in pp reactions at collider energy. A comparison with Monte Carlo models shows that our understanding of the dynamics of multiparticle production is still insufficient. We discuss a possible improvement by including low pT clustering effects in addition to those of Lund-strings alone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bialas and R. Peschanski, Nucl Phys. B273 (1986) 70.Google Scholar
  2. 1.
    A. Bialas and R. Peschanski, Nucl Phys. B308 (1988) 857.ADSCrossRefGoogle Scholar
  3. 2.
    for a review see “Scaling Laws for density correlations and fluctuations in multiparticle dynamics”, E.A. De Wolf, L.M. Dremin, W. Kittel, HEN-362 (1993), to appear in Phys. Rep.; Some recent results are also given in “Density and Correlation Integrals in Deep Inelastic Muon-Nucleon Scattering at 490 GeV” (Fermilab E665-collab.) MPI-PhE/94–12 and N.M. Agababyan et al. (NA22/EHS-collab.), Phys. Lett. B328 (1994) 199, P. Abreu et al. (DELPHI-collab.), Z. Phys. C63 (1994) 17.Google Scholar
  4. 3.
    P. Lipa et al., Phys. Lett. B285 (1992) 300.ADSGoogle Scholar
  5. 4.
    H.C. Eggers et al., Phys. Lett. B301 (1993) 298.ADSGoogle Scholar
  6. 5.
    H.C. Eggers et al., Phys. Rev. D48 (1993) 2040.ADSGoogle Scholar
  7. 6.
    E.L. Berger et al., Phys. Rev. D15 (1977) 206.ADSGoogle Scholar
  8. 7.
    N. Neumeister et al. (UA1-collab.), Z. Phys. C60 (1993) 633.ADSGoogle Scholar
  9. 8.
    E Mandl and B. Buschbeck, “Correlation integral studies in DELPHI and UA1”, Proc. 22. Internat. Symp. on Multiparticle Dynamics, Santiago de Compostela, Spain, 1992, Ed. C. Pajares (World Scientific).Google Scholar
  10. 9.
    P. Grassberger, Nucl. Phys. B120 (1977) 231.ADSCrossRefGoogle Scholar
  11. 10.
    N. Neumeister et al., (UA1-collab.), Z. Phys. C60 (1993) 633.ADSGoogle Scholar
  12. 11.
    A. Giovannini, Lett. Nuovo Cimento 6 (1973) 514.CrossRefGoogle Scholar
  13. 12.
    Z. Koba, Proc. of 1973 CERN-JNR School of Physics, CERN-Jellow Rep. 73-12.Google Scholar
  14. L. Diosi, Nucl. Instr. Meth. 138 (1976) 241.CrossRefGoogle Scholar
  15. 13.
    T. Sjöstrand, Comp. Phys. Com. 82 (1994) 74.ADSCrossRefGoogle Scholar
  16. 14.
    C. Albajar et al. (UAl-collab.), Nucl. Phys. B345 (1990) 1.ADSCrossRefGoogle Scholar
  17. Y.F. Wu et al. (UAl-collab.), Acta Physica Slovaca V44 (1994) 141.Google Scholar
  18. 15.
    R. Hagedorn, invited lecture, this conference.Google Scholar
  19. 16.
    G.J. Alner et al. (UA5), Nucl Phys. B291 (1987) 445.ADSCrossRefGoogle Scholar
  20. 17.
    G.J.H. Burgers, C. Fuglesang, R. Hagedorn and V. Kuvshinov, Z. Phys. C46 (1990) 465.Google Scholar
  21. 18.
    P. Aurenche et al., “DTUJET-93. Sampling inelastic pp and pp collisions according to the two-component Dual Parton Model”, SI-93-3.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • B. Buschbeck
    • 1
  • P. Lipa
    • 1
  • F. Mandl
    • 1
  1. 1.Institut für Hochenergiephysik der ÖsterrAkademie der WissenschaftenWienAustria

Personalised recommendations