Deconfinement of Constituent Quarks and the Hagedorn Temperature

  • O. D. Chernavskaya
  • E. L. Feinberg
Part of the NATO ASI Series book series (NSSB, volume 346)


The overwhelming majority of theoretical papers on phase transition of hadronic matter H to quark gluon plasma (HQGP) ignores constituent quarks Q which we shall call below briefly valons (the term proposed by R.Hwa). The present paper is fundamentally based on the conception of those valons as real entities having the same quantum numbers as current quarks and the mass which was more than once calculated theoretically as some 300 MeV and used for explanation of experiments (e.g., see1). The possibility of existence of a special state of strong interacting matter, that of deconfined valon gas with still broken chiral symmetry, is discussed here.


Triple Point Chiral Symmetry Collision Cross Section Constituent Quark Current Quark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.L. Ioffe, V.A. Khoze, L.N. Lipatov, “Hard Processes”. Volume 1. “Phenomenology, Quark-Parton Model”, North Holland, Amsterdam, 1984.Google Scholar
  2. 2.
    J. Cleymans, K. Redlich, H. Satz, E. Suhonen, Z.Phys.C 33(1986), 151.ADSCrossRefGoogle Scholar
  3. 3.
    S. Sohlo, E. Suchonen, J. Phys. G. Nucl. Phys. 13 (1987), 1487.ADSCrossRefGoogle Scholar
  4. 4.
    H. Kuono and F. Takagi, Z. Phys. C 42 (1989), 209.CrossRefGoogle Scholar
  5. 5.
    D.V. Anchishkin, K.A. Bugaev, M.I. Gorenshtein, E. Suhonen, Z. Phys. C45 (1990) 687.ADSGoogle Scholar
  6. 6.
    E.V. Shuryak Phys. Lett. 107B (1981) 103.ADSGoogle Scholar
  7. 6.
    E.V. Shuryak Nucl. Phys. B203 (1982) 140.ADSCrossRefGoogle Scholar
  8. 7.
    E. Feinberg, On Deconfinement of Constituent and Current Quarks in Nucleus-Nucleus Collisions, P.N. Lebedev Institute Preprint, 1989, N 177.Google Scholar
  9. 8.
    E. Feinberg in Relativistic Heavy Ion Collision, ed. by L.P. Czemai and D.D. Strottman, World Scientific, 1991 (see Chapter 5, Section 7).Google Scholar
  10. 9.
    R. Hagedorn and J. Rafelsky, in: Thermodynamics of quarks and hadrons. H. Satz (Ed.). Amsterdam: North Holland 1981.Google Scholar
  11. R. Hagedorn: Z. Phys. C-Particles and Fields 17 (1983) 265.ADSCrossRefGoogle Scholar
  12. 10.
    V.V. Anisovich, M.N. Kobrinsky, Y. Niri and Y.M. Shabelski, Sov. Phys. Uspekhi, 4 (1984) 553 (see section 1).ADSGoogle Scholar
  13. 11.
    O.D. Chernavskaya, “Double phase transition at zero temperature” (to be published).Google Scholar
  14. 12.
    O.D. Chernavskaya and E.L. Feinberg, “The possibility of double phase transition via the deconfined constituent quark phase” (to be published).Google Scholar
  15. 13.
    E.V. Shuryak, The QCD Vacuum, Hadrons and the Superdense Matter, World Scientific, 1988, see fig.(9.2).Google Scholar
  16. 14.
    Ch. Barter, D. Blaschke, H. Voss, Phys. Lett. B 293 (1992) 423.ADSCrossRefGoogle Scholar
  17. 15.
    M. Anikina Z.Phys. C 25 (1984) 1.ADSCrossRefGoogle Scholar
  18. 15.
    M. Anikina Phys.Rev. C 23 (1986) 895.ADSCrossRefGoogle Scholar
  19. Okonov E.O. in: Proceed, of Intern. Symposium on Modern Developments in Nuclear Physics, Novosibirsk, 1987, p. 166, World Scientific.Google Scholar
  20. 16.
    F. Karsch Prep. CERN TH/13/94.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • O. D. Chernavskaya
    • 1
  • E. L. Feinberg
    • 1
  1. 1.P.N. Lebedev Physical Institute of the Russian Academy of Sciences RussiaMoscowRussia

Personalised recommendations