Advertisement

Cleavage of Human Immunoglobulins by Proteinase from Staphylococcus Aureus

  • Ludmila Prokesová
  • Bela Potuzníková
  • Jan Potempa
  • Jirí Zikán
  • Jiri Radl
  • Zofia Porwit-Bóbr
  • Ctirad John
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 371)

Abstract

Many pathogenic bacteria release proteinases that cleave Ig.1 The proteolytic damage of antibodies by bacterial exoproducts is usually taken to be a factor of virulence which compromises the immunological protection of the host against infection. Most existing studies of bacterial proteinases have concentrated on the cleavage of human IgA because of its important role in defense on mucosal surfaces that are the entrance point for most infections. Bacterial proteinases usually cleave IgAl selectively in the hinge region. A more extensive cleavage or the cleavage of both IgA subclasses occurs only rarely.1,2 The cleavage of more immunoglobulin classes has so far been described only in Pseudomonas aeruginosa 3, Serratia marcescens 4, and Proteus mirabilis.5

Keywords

Serine Proteinase Serratia Marcescens Hinge Region Proteus Mirabilis Bacterial Proteinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kilian, B. Thomsen, T. E. Petersen, and H. S. Bleeg, Ann. NY Acad. Sci. 409: 612 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Fujiyama, K. Kobayashi, S. Senda, Y. Benno, T. Bamba, and S. Hosoda, J. Immunol. 134: 573 (1985).PubMedGoogle Scholar
  3. 3.
    G. Doring, H.-J. Obernesser, and K. Botzenhart, Zbl. Bacteriol. Microbiol. Hyg. 249: 89 (1981).Google Scholar
  4. 4.
    A. Molla, T. Kagimito, and H. Maeda, Infect. Immun. 56: 916 (1988).PubMedGoogle Scholar
  5. 5.
    L. M. Loomes, B. W. Senior, and M. A. Kerr, Infect. Immun. 58: 1979 (1990).PubMedGoogle Scholar
  6. 6.
    J. Rousseaux, R. Rousseaux-Prévost, H. Bazin, and G. Biserte, Biochim. Biophys, Acta 748: 205 (1983).CrossRefGoogle Scholar
  7. 7.
    S. D. Arvidson, in: “Staphylococci and Staphylococcal Infections”, C.S.F. Easmon and C. Adlam, ds., Vol. 2, p. 780, Academic Press, London (1983).Google Scholar
  8. 8.
    L. Prokesová, Z. Porwit-Bóbr, K. Baran, J, Potempa, and C. John, Immunol Lett. 19: 127 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Prokesová, Z. Porwit-Bóbr, K. Baran, J. Potempa, M. PospÍsil, and C. John, Immunol. Lett. 27: 225 (1991).PubMedCrossRefGoogle Scholar
  10. 10.
    G. R. Drapeau, Can. J. Biochem. 56: 534 (1978).Google Scholar
  11. 11.
    U. K. Laemmli, Nature 227: 680 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Tlaskalová-Hogenová, J. Bártová, L. Mrklas, P. Mancal, Z. Broukal, R. Barot-Ciorbaru, M. Novák, and M. Hanikyrová, Folia Microbiol. 30: 258 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ludmila Prokesová
    • 1
  • Bela Potuzníková
    • 1
  • Jan Potempa
    • 3
  • Jirí Zikán
    • 2
  • Jiri Radl
    • 4
  • Zofia Porwit-Bóbr
    • 3
  • Ctirad John
    • 1
  1. 1.First Medical FacultyCharles UniversityPragueCzech Republic
  2. 2.Institute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
  3. 3.Jagiellonian UniversityCracowPoland
  4. 4.Vascular ResearchLeidenThe Netherlands

Personalised recommendations