Advertisement

Effects of Nocardia-Delipidated Cell Mitogen on Intestinal Mucosa and Spleen Lymphocytes of Germ-Free Rats

  • Hana Kozáková
  • Renata Stépánková
  • Helena Tlaskalová
  • Rita Barot-Ciorbaru
  • Jirina Kolinská
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 371)

Abstract

Many compounds of bacterial origin can modulate basic physiological parameters of the mammalian organism including the immune system. One of them is Nocardia- delipidated cell mitogen (NDCM) which was isolated by delipidation from Nocardia opaca.1 NDCM stimulates proliferation of small resting human B lymphocytes and their differentiation into Ig-secreting cells.2 The mucosa of small intestine, especially the enterocytes, cells with digestive and absorptive function, produce a number of glycohydrolases. The disaccharidase (sucrase, lactase, and glucoamylase) activities of brush border membrane vesicles (BBMV) of enterocytes after a short-term NDCM- treatment have not been studied. Measurement of lymphocyte proliferation is an established method of quantifying the immune response to foreign antigens. Antigenic stimulation of human peripheral blood lymphocytes by NDCM was measured by Barot-Ciorbaru.2 Neither 3H -TdR-nor 3H-UdR-uptake by T cells has been measured after NDCM stimulation.

Keywords

Brush Border Membrane Vesicle Spleen Lymphocyte Glucoamylase Activity Basic Physiological Parameter Brush Border Membrane Vesicle Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ciorbaru, A. Adam, J. F. Petit, E. Lederer, C. Bona, and L. Chedid, Infect. Immun. 11: 257 (1975).PubMedGoogle Scholar
  2. 2.
    R. Barot-Ciobaru, J. Brochier, T. Miyawaki, L. Preud’homme, J. F. Petit, C. Bona, N. Taniguchi, and J. P. Revillard, J. Immunol. 135: 3277 (1985).Google Scholar
  3. 3.
    R. Stepánková, Folia Microbiol. 24: 11 (1979).CrossRefGoogle Scholar
  4. 4.
    H. Tlaskalová-Hogenová, J. Bártová, L. Mrklas, P. Mancal, Z. Broukal, R. Barot-Ciorbaru, M. Novák, and M. Hanikyrová, Folia Microbiol. 30: 258 (1985).CrossRefGoogle Scholar
  5. 5.
    P. Siman, J. Immunol. Methods 146: 1 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Kováru, M. Pospisil, Lymphology 13: 30 (1980).PubMedGoogle Scholar
  7. 7.
    J. Schmitz, H. Preisner, D. Maestracci, B. K. Ghosh, J. Cerda, and R. K. Crane, Biochim. Biophys. Acta 323: 98 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, J. Biol. Chem. 193: 265 (1951).PubMedGoogle Scholar
  9. 9.
    J. Kolinská and J. Kraml, Biochim. Biophys. Acta 284: 235 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Dahlquist, Anal. Chem. 7: 18 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Hana Kozáková
  • Renata Stépánková
    • 1
  • Helena Tlaskalová
    • 1
  • Rita Barot-Ciorbaru
    • 2
  • Jirina Kolinská
    • 3
  1. 1.Institute of Microbiology, Department of Immunology and GnotobiologyCzechoslovak Academy of SciencePrague 4Czech Republic
  2. 2.Institut de BiochemieUniversité Paris-SudOrsayFrance
  3. 3.Institute of PhysiologyCzechoslovak Academy of SciencePrague 4Czech Republic

Personalised recommendations