Recent Applications of Boltzmann’s Theory

  • D. Rainer


We celebrate Boltzmann on the occasion of his 150th birthday as a pioneer of many-body theory. Of special importance for many-body physics is Boltzmann’s transport equation which he introduced in order to describe the macroscopic behavior of gases in terms of the microscopic motion of interacting atoms. One might say, using a more modern language, that Boltzmann’s equation solved the many-body problem of a dilute gas of classical atoms with strong short range interactions. It was realized later that this equation is a very fundamental equation of many-body statistics. For example, the Boltzmann equation is established today as one of the basic equations of the physics of gases, plasma physics, neutron transport, radiative transfer, the theory of semiconductors and metals, the theory of quantum liquids, and other fields of physics.


Boltzmann Equation Fermi Surface Fermi Liquid Collision Term Renormalization Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.D. Landau, Sou. Phys. JETP 8:70(1959).Google Scholar
  2. 2.
    G. Baym and C. J. Pethick, “Landau Fermi-Liquid Theory.” Wiley, New York (1991).CrossRefGoogle Scholar
  3. 3.
    D. Pines and P. Nozieres, “The Theory of Quantum Liquids,” Addison-Wesely, Rewood City (1989).Google Scholar
  4. 4.
    A.A. Abrikosov, L.P. Gor’kov and Dzyaloshinskii, “Methods of Quantum Field Theory in Statistical Physics,” Prentice-Hall, Englewood, Cliffs, New York (1963).Google Scholar
  5. 5.
    A.L. Fetter and J.D. Walecka, “Theory of Many-Particle Systems,” McGraw Hill, New York (1971).Google Scholar
  6. 6.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108:1175(1957).Google Scholar
  7. 7.
    G. Eilenberger, Z. Physik 214:195(1968).Google Scholar
  8. 8.
    A.I. Larkin and Y.N. Ovchinnikov, Soy. Phys. JETP 28:1200(1969).Google Scholar
  9. 9.
    A.I. Larkin and Y.N. Ovchinnikov, Sou. Phys. JETP 41:960(1976).Google Scholar
  10. 10.
    G. Eliashberg, Sou. Phys. JETP 34:668(1972).Google Scholar
  11. 11.
    P. Muzikar, D. Rainer and J.A. Sauls, in: “Vortices in Superfluids,” NATO-ASI Series,N. Bontemps, Y. Bruynsraede, G. Deutscher, and A. Kapitulnik, ed., Kluver Academic Publishers, Dordrecht (1994), p. 244.Google Scholar
  12. 12.
    See contributions to M 2 S - HTSC IV Grenoble 1994 (to be published in Physica C).Google Scholar
  13. 13.
    P.W. Anderson, “A Career in Theoretical Physics,” World Scientific, Singapore (1994).Google Scholar
  14. 14.
    U. Eckern, Ann. Phys. 133:390(1981).Google Scholar
  15. 15.
    J. Serene and D. Rainer, Phys. Reports 101:221(1983).Google Scholar
  16. 16.
    A.I. Larkin and Y.N. Ovchinnikov, in: “Nonequilibrium Superconductivity,” D.N. Langenberg and A.I. Larkin, ed., Elsevier Science Publishers, Amsterdam (1986) p. 493.Google Scholar
  17. 17.
    J. Rammer and H. Smith, Rev. Mod. Phys. 58:323(1986).Google Scholar
  18. 18.
    D. Rainer, in: “Progress in Low Temperature Physics X,” D.F. Brewer, ed., Elsevier Science Publishers, Amsterdam (1986) p. 371.CrossRefGoogle Scholar
  19. 19.
    D. Rainer and J.A. Sauls Strong-Coupling Theory of Superconductivity, Spring College in Condensed Matter on “Superconductivity” 1992, I.C.T.P. Trieste, to be published.Google Scholar
  20. 20.
    L.V. Keldysh, Soy. Phys. JETP 20:1018(1965).Google Scholar
  21. 21.
    G. Eliashberg, Sou. Phys. JETP 15:1151(1962).Google Scholar
  22. 22.
    R.E. Prange and L.P. Kadanoff, Phys. Rev. 134:A566(1964).Google Scholar
  23. 23.
    A.B. Migdal, Soy. Phys. JETP 7:996(1958).Google Scholar
  24. 24.
    J.M. Luttinger, Phys. Rev. 119:1153(1960).Google Scholar
  25. 25.
    J.M. Luttinger, Phys. Rev. 121:1251(1961).Google Scholar
  26. 26.
    G. Eliashberg, Sou. Phys. JETP 11:696(1960).Google Scholar
  27. 27.
    A.M. Afanas’ef and Yu. Kagan, Sou. Phys. JETP 16:1030(1963).Google Scholar
  28. 28.
    Yu.A. Bychkov and L.P. Gorkov, Sou. Phys. JETP 14:1132(1962).Google Scholar
  29. 29.
    V. Ambegaokar and G. Rickayzen, Phys. Rev. 142:146(1966).Google Scholar
  30. 30.
    J.S. Langer, Phys. Rev. 127:5(1962).Google Scholar
  31. 31.
    A.J. Leggett, Phys. Rev. 140:1869(1965).Google Scholar
  32. 32.
    A.J. Leggett, Phys. Rev. 147:119(1966).Google Scholar
  33. 33.
    A.A. Abrikosov and L.P. Gor’kov, Soy. Phys. JETP 9:220(1959).Google Scholar
  34. 34.
    L.P. Kadanoff and G. Baym, “Quantum Statistical Mechanics,” Benjamin, New York (1962).MATHGoogle Scholar
  35. 35.
    D.C. Mattis, J. Math. Phys. 15:609(1974).Google Scholar
  36. 36.
    F.D.M. Haldane, J. Phys. C14:2585(1981).Google Scholar
  37. 37.
    C. Castellani, C. Di Castro, and W. Metzner, Phys. Rev. Lett. 72:361(1994).Google Scholar
  38. 38.
    J.R. Engelbrecht, M. Randeria, and L. Zhang, Phys. Rev. B45:10135(1992).Google Scholar
  39. 39.
    J.R. Engelbrecht and M. Randeria, Phys. Rev. B45:12491(1992).Google Scholar
  40. 40.
    M. Eschrig, J. Heym, D. Rainer, J. Low Temp. Phys. 95:323(1994).Google Scholar
  41. 41.
    J. Heym and D. Rainer, Helvetia Physica Acta 65:415(1991).Google Scholar
  42. 42.
    J.M.P. Carmelo, P. Horsch, A.A. Ovchinnikov, Phys. Rev. B46:14728(1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. Rainer
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations