Advertisement

Research of Appropriate Treatments of the Various Aspects of the Electron Correlation in Molecules and their Interplay

  • J. P. Malrieu

Abstract

The research of theoretically grounded and numerically efficient methods for the treatment of the electron correlation in molecules mobilized many of the quantum chemists during the seventies and the eighties. The very last years have seen a major event with the sudden conversion of prominent pionneers in the molecular many-body problem to Density Functional approaches. One may quote J. Pople, who had made popular and developped the Rayleigh-Schrödinger Perturbative approach (the Moller-Plesset1 expansion to nth order (n≤4), now routinely utilised by chemists as the standard post Hartree-Fock correction.2) One year after a strong polemic with Kohn in the 7th World Quantum Chemistry Conference in Menton (1991), he published a series of calculations in DF approach.3 Similarly N. Handy, who had contributed to the perturbative developments and to the efficient direct full CI algorithms,4 also decided to devote most of his efforts to the DF techniques.5 Some of the Many-Body quantum chemistry leaders, such as R. Bartlett, who has contributed so much to the Coupled Cluster developments, have an intermediate position and try to compare the relative advantages of the explicit correlation treatments and of the DF techniques.6 By the way I would like to mention, as a comment of Sociology of Science rather than of Physics, that this sudden shift was partly induced by a demand: in our field several private compagnies, created and managed by Quantum Chemists and employing several tens of persons, now propose and sell, for a non-negligible price, their packages to both the industrial and academic laboratories.

Keywords

Correlation Energy Potential Energy Curve Dynamical Correlation Double Excitation Valence Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Moller and M.S. Plesset, Phys. Rev. 46:618(1934).Google Scholar
  2. 2.
    W.J. Hehre, L. Radom, PvR. Schleyer, and J.A. Pople, “Ab-initio molecular orbital theory,” Wiley, New York (1986); M. Head-Gordon, J.A. Pople, and M.J. Frisch, Chem. Phys. Lett. 153:503(1989); M.J. Frisch, M. Head-Gordon, and J.A. Pople, Chem. Phys. Lett. 166:275(1990).Google Scholar
  3. 3.
    B.G. Johnson, P.M.W. Gill, and J.A. Pople, J. Chem. Phys. 97:7846(1992); ibid. 98:5612(1993).Google Scholar
  4. 4.
    R.J. Harrison and N. Handy, Chem. Phys. Lett. 98:97(1983); P.J. Knowles and N.C. Handy, J. Chem. Phys. 91:2396(1989).Google Scholar
  5. 5.
    see for instance, G.J. Laming, U. Termath, and N.C. Handy, J. Chem. Phys. 99:8765(1993).Google Scholar
  6. 6.
    N. Oliphant and R.J. Bartlett, J. Chem. Phys. 100:6550(1994).Google Scholar
  7. 7.
    R. Pariser and R.G. Parr, J. Chem. Phys. 21:466(1953); ibid. 21:767(1953).ADSGoogle Scholar
  8. 8.
    J.A. Pople, Trans. Far. Soc. 49:1375(1953).Google Scholar
  9. 9.
    X. Gadéa, D. Maynau, and J.P. Malrieu, Int. J. Quant. Chem. 26:1(1984).Google Scholar
  10. 10.
    G. Stolhoff and P. Fulde, J. Chem. Phys. 73:4548(1980); A.M. O1es, F. Pfirsch, P. Fulde, and M. Böhm, J. Chem. Phys. 85:5183(1986); P. Fulde, “Electron correlations in molecules and solids,” Springer, Berlin (1991).Google Scholar
  11. 11.
    A. Clotet, J.P. Daudey, J.P. Malrieu, J. Rubio, and F. Spiegelmann, Chem. Phys. 147:293(1990).Google Scholar
  12. 12.
    A.W. Overhauser, Phys. Rev. Lett. 4:415(1960); W.H. Adams, Phys. Rev. 127:1650 (1962); J. Cizek and J. Paldus, Phys. Rev. A2:2968(1970); H. Fukutome, Int. J. Quant. Chem. 20:955(1981); M.B. Lepetit, J.P. Malrieu, and M. Pélissier, Phys. Rev. A39:981(1989).Google Scholar
  13. 13.
    K. Andersson, M.R.A. Blomberg, M.P. Fulsher, V. Kello, R. Lindh, P.A. Malmqvist, J. Noga, J. Olsen, B.O. Roos, A.J. Sadlej, P.E.M. Siegbahn, M. Urban, and P.O. Wildmark, “MOLCAS.Version 2,” University of Lund, Sweden (1991).Google Scholar
  14. 14.
    F.W. Bobrowicz and W.A. Goddard III, in: “Modern. Theoretical Chemistry,” Vol. 3, H.F. Schaefer III, ed., Plenum, New York (1976); G. Chambaud, M. Gerard-Ain, E. Kassab, B. Levy, and P. Pernot, Chem. Phys. 90:271(1984); F. Illas, M. Merchan, M. Pélissier, and J.P. Malrieu, Chem. Phys. 107:361(1986).Google Scholar
  15. 15.
    A.D. McLean, B.H. Lengsfield, J. Pacansky, and Y. Ellinger, J. Chem. Phys. 83:3567(1985); G. Trinquier and J.P. Malrieu, “The structure of the double bond,” Patai, ed., Wiley, New York (1990); A. Faradzed, M. Dupuis, E. Clementi, and A. Aviram, J. Amer. Chem. Soc. 112:4206(1992).Google Scholar
  16. 16.
    C.W. Bauschlicher and S.R. Langhoff, J. Chem. Phys. 89:4246(1988); A. Sanchez de Meras, M.B. Lepetit, and J.P. Malrieu, Chem. Phys. Lett. 172:163(1990).Google Scholar
  17. 17.
    N. Guihery, K. Handrick, D. Maynau, and J.P. Malrieu, to be published.Google Scholar
  18. 18.
    H.J. Werner and W. Meyer, J. Chem. Phys. 74:5794(1981).Google Scholar
  19. 19.
    A. Zaïtsevskii and J.P. Malrieu, Chem. Phys. Lett. 228:458(1994).Google Scholar
  20. 20.
    A.M. Lee and N.C. Handy, to be published.Google Scholar
  21. 21.
    M.B. Lepetit, M. Pélissier, and J.P. Malrieu, J. Chem. Phys. 89:998(1988).Google Scholar
  22. 22.
    P.M.W. Gill, B.G. Johnson, and J.A. Pople, Int. J. Quant. Chem. Symp. 26:319(1992).Google Scholar
  23. 23.
    F.W. Kutzler and G.S. Painter, Phys. Rev. B45:3236(1992).Google Scholar
  24. 24.
    C.W. Murray, N.C. Handy, and R.D. Amos, J. Chem. Phys. 98:7145(1993).Google Scholar
  25. 25.
    A. Goursot, J.P. Malrieu, and D. Salahub, Theoret. Chim. Acta, in press.Google Scholar
  26. 26.
    R. Colle and O. Salvetti, Theoret. Chim. Acta, 53:55(1979); B. Roos, M. Szulkin, and M. Jaszunski, Theor. Chim. Acta, 71:375(1987); A. Savin, in: “Density functional methods in chemistry,” J.K. Labanowski and J.W. Andzelm, ed., Springer, New York (1991), p. 231Google Scholar
  27. 27.
    H.P. Kelly and M.A. Sessler, Phys. Rev. 132:2091(1963); ibid. 134:1450(1960); W. Meyer, Int. J. Quant. Chem. 5:341(1971); W. Meyer, J. Chem. Phys. 58:1017 (1973); W. Meyer, Theoret. Chim. Acta 35:277(1974); C.E. Dykstra, Chem. Phys. Lett. 88:202(1983); P.G. Jasien and C.E. Dykstra, Int. J. Quant. Chem. Symp. 17:289(1983).Google Scholar
  28. 28.
    R. Ahlrichs, P. Scharf, and C. Elrhardt, J. Chem. Phys. 82:890(1985); D.P. Change and S.R. Langhoff, J. Chem. Phys. 84:5606(1986).Google Scholar
  29. 29.
    F. Coester, Nucl. Phys. 1:421(1958); F. Coester and H. Kummel, Nucl. Phys. 17:477(1960).Google Scholar
  30. 30.
    P. Hiberty, Chem. Phys. Lett. 189:259(1992); P. Hiberty, to be published.Google Scholar
  31. 31.
    R. Ghailane, M.B. Lepetit, and J.P. Malrieu, J. Phys. Chem. 97:94(1993).Google Scholar
  32. 32.
    W. Kutzelnigg, Theoret. Chim. Acta 68:445(1985).Google Scholar
  33. 33.
    W. Klopper and W. Kutzelnigg, Chem. Phys. Lett. 134:17(1987); W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94:1985(1991); M.J. Bearpark, N.C. Handy, R.A. Amos, and P.E. Maslen, Theoret. Chim. Acta 79:361(1991); W. Klopper and W. Kutzelnigg, J. Phys. Chem. 94:5625(1990); ibid. 94:2020 (1991); V. Termath, W. Klopper, and W. Kutzelnigg, J. Chem. Phys. 94:2002 (1991).Google Scholar
  34. 34.
    W. Klopper, R. Röhse, and W. Kutzelnigg, Chem. Phys. Lett. 178:455(1991).Google Scholar
  35. 35.
    J. Noga, W. Kutzelnigg, and W. Klopper, Chem. Phys. Lett. 199:497(1992).Google Scholar
  36. 36.
    R.J. Gdanitz, Chem. Phys. Lett. 210:253(1993).Google Scholar
  37. 37.
    R. Bukowski, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 100:1336(1994).Google Scholar
  38. 38.
    see for instance recent works using MP4 and CCSD(T) on He2Ne2, Are: D. Woon, J. Chem. Phys. 100:2838(1994); using a Coupled-Cluster-Effective Hamiltonian: J.F. Stanton, Phys. Rev. A49:1698(1994).Google Scholar
  39. 39.
    G.H. Jeung, J.P. Malrieu, and J.P. Daudey, J. Chem. Phys. 77:3571(1982); G.H. Jeung, J.P. Daudey, and J.P. Malrieu, J. Phys. B16:699(1983).Google Scholar
  40. 40.
    W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 80:3297(1984); W. Müller and W. Meyer, J. Chem. Phys. 80:311(1984); P. Fuentealba, H. Preuss, M. Stoll, and L. Szentpaly, Chem. Phys. Lett. 89:418(1982).Google Scholar
  41. 41.
    M. Foucrault, Ph. Millie, and J.P. Daudey, J. Chem. Phys. 96:1257(1992).Google Scholar
  42. 42.
    J.P. Malrieu, P. Durand, and J.P. Daudey, J. Phys. A. Math. Gen. 18:809(1985); P. Durand and J.P. Malrieu, in: “Ab-initio methods in Quantum Chemistry I,” K.P. Lawley, ed., Wiley, New York (1987), p. 311; A.V. Zaitsevskii, J. Phys. II France 3:435, 3:1593(1993); A.V. Zaitsevskii and J.L. Heully, J. Phys. B, At. Mol. Phys. 25:603(1992); D. Mukhopadhyay, B. Datta, and D. Mukherjee, Chem. Phys. Lett. 197:236(1992); S. Koch, Theoret. Chico. Acta 81:169(1991).Google Scholar
  43. 43.
    L. Serrano-Andres, M. Merchan, I. Nebot-Gil, R. Lindl, and B.O. Roos, J. Chem. Phys. 98:315(1993); A. Zaitsevskii and J.P. Malrieu, Int. J. Quant. Chem. in press.Google Scholar
  44. 44.
    A. Ramirez-Solis and J.P. Daudey, Chem. Phys. 134:111(1989); J.P. Malrieu, J.L. Heully, and A. Zaitsevskii, Theoret. Chim. Acta in press.Google Scholar
  45. 45.
    W. Klopper, “Report at the 8th International Congress of Quantum Chemistry,” Praha (1994).Google Scholar
  46. 46.
    M.B. Lepetit and J.P. Malrieu, J. Chem. Phys. 87:5937(1987).Google Scholar
  47. 47.
    M.B. Lepetit and J.P. Malrieu, Chem. Phys. Lett. 208:503(1993).Google Scholar
  48. 48.
    J.L. Heully and J.P. Malrieu, Chem. Phys. Lett. 199:545(1992).Google Scholar
  49. 49.
    J.P. Daudey, J.L. Heully, and J.P. Malrieu, J. Chem. Phys. 99:1240(1993).Google Scholar
  50. 50.
    P. Piecuch and L. Adamowicz, J. Chem. Phys. 100:5857(1994).Google Scholar
  51. 51.
    I. Nebot-Gil, J. Sanchez-Marin, J.L. Heully, J.P. Malrieu, and D. Maynau, Chem. Phys. Lett. submitted for publication.Google Scholar
  52. 52.
    J. Noga and R.J. Bartlett, J. Chem. Phys. 86:7041(1987); G.E. Scuseria and H.F. Schaefer III, Chem. Phys. Lett. 152:382(1988).Google Scholar
  53. 53.
    N. Oliphant and L. Adamowicz, J. Chem. Phys. 95:6645(1991); S.A. Kucharski and R.J. Bartlett, Theoret. Chim. Acta 80:387(1991).Google Scholar
  54. 54.
    J.A. Pople, M. Head-Gordon, and K. Ragavachavi, J. Chem. Phys. 87:5968(1987).Google Scholar
  55. 55.
    J. Sanchez-Marin, D. Maynau, and J.P. Malrieu, Theoret. Chim. Acta 87:107(1993); J.P. Malrieu, I. Nebot-Gil, and J. Sanchez-Marin, J. Chem. Phys. 100:1440(1994).Google Scholar
  56. 56.
    L.E. Nietsche and E.R. Davidson, J. Chem. Phys. 68:3103(1978); J. Amer. Chem. Soc. 100:7201(1978); E.R. Davidson, L.B. McMurchie, and S.J. Day, J. Chem. Phys. 74:5491(1981).Google Scholar
  57. 57.
    Y.S. Lee, S.A. Kucharski, and R.J. Bartlett, J. Chem. Phys. 84:5906(1984); M. Urban, J. Noga, S.J. Cole, and R.J. Bartlett, J. Chem. Phys. 83:4041(1986).Google Scholar
  58. 58.
    P.J.A. Ruttink, J.H. Van Lenthe, R. Zwaans, and G.G. Groenenboom, J. Chem. Phys. 94:7212(1991).Google Scholar
  59. 59.
    R. Fink and V. Staemmler, Theoret. Chim. Acta 87:129(1993).Google Scholar
  60. 60.
    R.J. Cave and E.R. Davidson, J. Chem. Phys. 59:6798(1988).Google Scholar
  61. 61.
    A. Povill, R. Caballol, J. Rubio, and J.P. Malrieu, Chem. Phys. Lett. 209:125(1992).Google Scholar
  62. 62.
    A. Povill, J. Rubio, R. Caballol, and J.P. Malrieu, Chem. Phys. Lett. 218:283(1994).Google Scholar
  63. 63.
    P.J. Knowles and N.C. Handy, J. Chem. Phys. 91:2396(1989).Google Scholar
  64. 64.
    J. Meller, J.L. Heully, and J.P. Malrieu, Chem. Phys. Lett. 218:276(1994).Google Scholar
  65. 65.
    I. Hubac and P. Carsky, Phys. Rev. A22:2392(1980); R.D. Amos, J.S. Andrews, N.L. Handy, and P.J. Knowles, Chem. Phys. Lett. 185:256(1991); P.J. Knowles, J.S. Andrews, R.D. Amos, N.C. Handy, and J.A. Pople, Chem. Phys. Lett. 186:130(1991); W.J. Lauderdale, J.F. Stanton, J. Gauss, J.D. Watts, and R.J. Bartlett, Chem. Phys. Lett. 187:21(1991); C. Murray and E.R. Davidson, Chem. Phys. Lett. 187:451(1991); T.J. Lee, A.P. Rendell, K.G. Dyall, and D. Yayatilaka, J. Chem. Phys. 100:7400(1994).Google Scholar
  66. 66.
    V. Staemmler and R. Jaquet, Theoret. Chim. Acta 59:487(1981).Google Scholar
  67. 67.
    for a review see D. Mukherjee and S. Pal, Adv. Quant. Chem. 20:292(1989).Google Scholar
  68. 68.
    B.H. Brandow, Rev. Mod. Phys. 39:771(1967).Google Scholar
  69. 69.
    B. Huron, J.P. Malrieu, and R. Rancurel, J. Chem. Phys. 58:5745(1973).Google Scholar
  70. 70.
    E.R. Davidson and C.F. Bender, Chem. Phys. Lett. 59:369(1978); K. Wolinski and P. Pulay, J. Chem. Phys. 90:3647(1989); K. Wolinski, Theoret. Chim. Acta 82:459(1992); R.J. Harrison, J. Chem. Phys. 94:5021(1991); K. Hirao, Chem. Phys. Lett. 196:397(1992); ibid. 201:59(1993).Google Scholar
  71. 71.
    P.M. Kozlowski and E.R. Davidson, J. Chem. Phys. 100:3672(1994).Google Scholar
  72. 72.
    K. Anderson, P.A. Malmqvist, B.O. Roos, A.J. Sadlej, and K. Wolinski, J. Phys. Chem. 94:5483(1990); K. Anderson, P.A. Malmqvist, B.O. Roos, J. Chem. Phys. 96:1218(1992).Google Scholar
  73. 73.
    H. Nakano, J. Chem. Phys. 99:7983(1993).Google Scholar
  74. 74.
    F. Spiegelmann and J.P. Malrieu, J. Phys. B, At. Mol. Phys. 17:1235, 17:1259(1984); E. Audouard and F. Spiegelmann, J. Chem. Phys. 94:6102(1991).Google Scholar
  75. 75.
    M.G. Sheppard, B.I. Schneider, and R.L. Martin, J. Chem. Phys. 79:1364(1983); A. Lisini and P. Decleva, Chem. Phys. 168:1(1992).Google Scholar
  76. 76.
    For a review see K. Freed, Lectures Notes Chem. 52:1(1989).Google Scholar
  77. 77.
    H. Feschbach, Ann. Phys. (N. Y.) 5:357(1958); ibid. 19:287(1962); Ann. Rev. Nucl. Sci. 8:49(1958); P.O. Löwdin, J. Math. Phys. 3:969(1962).Google Scholar
  78. 78.
    J.L. Heully, J.P. Malrieu, and A. Zaitsevskii, to be published.Google Scholar
  79. 79.
    J.P. Malrieu, J.P. Daudey, and R. Caballol, J. Chem. Phys. in press.Google Scholar
  80. 80.
    R.J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143:413(1988).Google Scholar
  81. 81.
    W.D. Laidig and R.J. Bartlett, Chem. Phys. Lett. 104:424(1984).Google Scholar
  82. 82.
    P.G. Szalay and R.J. Bartlett, Chem. Phys. Lett. 214:481(1993).Google Scholar
  83. 83.
    D. Mukherjee, R.K. Matra, and A. Mukhopadhyay, Mol. Phys. 30:1561(1975); ibid. 33:955(1977); I. Lindgren, Int. J. Quant. Chem. Symp. 12:33(1978); R. Offerman, W. Ey, and H. Kümmel, Nucl. Phys. A273:349(1976); B. Jeziorski and H.J. Monkhorst, Phys. Rev. A24:1668(1981).Google Scholar
  84. 84.
    G. Hose and U. Kaldor, J. Phys. B12:3827(1979); J. Chem. Phys. 86:2133(1982).Google Scholar
  85. 85.
    D. Mukherjee, Chem. Phys. Lett. 125:207(1986); D. Sinha, S.K. Mukhopadhyay, and D. Mukherjee, Chem. Phys. Lett. 129:369(1986).Google Scholar
  86. 86.
    D. Mukhopadhyay and D. Mukherjee, Chem. Phys. Lett. 163:171(1989); ibid. 177:441(1991).Google Scholar
  87. 87.
    L. Meissner, S. Kucharski, and R.J. Bartlett, J. Chem. Phys. 91:6187(1989).Google Scholar
  88. 88.
    L. Meissner and R.J. Bartlett, J. Chem. Phys. 92:561(1990).Google Scholar
  89. 89.
    D. Mukherjee, Int. J. Quant. Chem. Sym. 20:409(1986).Google Scholar
  90. 90.
    S. Sinha, S.K. Mukhopadhyay, R. Chaudui, and D. Mukherjee, Chem. Phys. Lett. 154:544(1989).Google Scholar
  91. 91.
    D. Mukhopadhyay, B. Datta-Kundu, and D. Mukherjee, Chem. Phys. Lett. 197:236 (1992).ADSCrossRefGoogle Scholar
  92. 92.
    E.A. Carter and W.A. Goddard III, J. Chem. Phys. 86:862(1987); ibid. 88:1752(1988).Google Scholar
  93. 93.
    E.A. Carter and W.A. Goddard III, J. Phys. Chem. 88:1485(1984); ibid. 91:465(1987); J. Amer. Chem. Soc. 108:2180(1986); J. Chem. Phys. 88:3132(1988).Google Scholar
  94. 94.
    R. Broer and W.J.A. Maaskant, Chem. Phys. 102:103(1986); J. Miralles, J.P. Daudey, and R. Caballol, Chem. Phys. Lett. 198:555(1992); K. Handrick, J.P. Malrieu, and O. Castell, J. Chem. Phys. 101:2205(1994); J. Fernandez-Sans and J.P. Malrieu, J. Phys. Chem. 97:99(1993).Google Scholar
  95. 95.
    O. Castell, J. Miralles, and R. Caballol, Chem. Phys. 179:377(1994).Google Scholar
  96. 96.
    J. Miralles, O. Castell, R. Caballol, and J.P. Malrieu, Chem. Phys. 172:33(1993).Google Scholar
  97. 97.
    W. von Niessen, J. Schirmer, and L.S. Cederbaum, Comp. Phys. Rep. 1:59(1984); F. Tarantelli, A. Sgamellotti, and L.S. Cederbaum, in: “Applied Many-Body Methods in Spectroscopy and Electron Structure,” D. Mukherjee, ed., Plenum, New York (1992).Google Scholar
  98. 98.
    see D.L. Yeager, in: “Applied Many-Body Methods in Spectroscopy and Electronic Structures,” D. Mukherjee, ed., Plenum, New York (1992), p. 133 and references herein.Google Scholar
  99. 99.
    E. Daalgard, M.J. Monkhorst, Phys. Rev. A28:217(1983); H. Sekino and R.J. Bartlett, J. Chem. Phys. 98:3022(1993); J.F. Stanton and R.J. Bartlett, J. Chem. Phys. 98:7029(1993); R. Graham, D.L. Yeager, J. Olsen, P. Jorgensen, R. Harrison, S. Zarr, and R.J. Bartlett, J. Chem. Phys. 85:6544(1986); J. Geersten, J. Oddershede, and G.E. Scuseria, Int. J. Quant. Chem. Sym. 21:475 (1987); D. Mukhopadhyay, R. Chauduri, and D. Mukherjee, Chem. Phys. Lett. 172:515(1990); S.K. Mukhopadhyay, R. Chauduri, D. Mukhopadhyay, and D. Mukherjee, Chem. Phys. Lett. 173:151(1990); S. Pal, M. Rittby, R.J. Bartlett, D. Sinha, and D. Mukherjee, J. Chem. Phys. 88:9357(1988); Chem. Phys. Lett. 137:272(1987); U. Kaldor, in: “Lecture Notes in Chemistry,” Vol. 52, U. Kaldor, ed., Springer, Berlin (1989); H. Koch, R. Kobayashi, A. Sanchez de Meras, and P. Jorgensen, J. Chem. Phys. 100:4393(1994).Google Scholar
  100. 100.
    R.A. Friesner, Ann. Rev. Phys. Chem. 42:341(1991); T. Martinez and E.A. Carter, J. Chem. Phys. 100:3631(1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. P. Malrieu
    • 1
  1. 1.Laboratoire de Physique Quantique, IRSAMCUniversité Paul SabatierToulouse CEDEXFrance

Personalised recommendations