Expression of Glycine Receptors by Identified Alpha and Gamma Motoneurones

  • Robert E. W. Fyffe
  • Francisco J. Alvarez
  • Deborah Harrington
  • Dianne E. Dewey


The neurotransmitter role of glycine is well established and has recently been reviewed by Aprison (1990). Glycine is a major inhibitory neurotransmitter in the mammalian spinal cord, and it exerts its postsynaptic effects via increases in the chloride permeability of the postsynaptic membrane. Glycine receptors, like GABAA receptors, are multimeric ligand-gated chloride channels whose structural and functional properties have been elucidated in great detail in recent years (Betz, 1991). Glycine receptor subunit mRNAs are expressed in widespread areas of the central nervous system (CNS; e.g. Malosio, Marquèze, Kuhse & Betz, 1991; Kirsch, Malosio, Wolters & Betz, 1993a). Advances in understanding of the molecular composition of glycine receptors have also led to the use of monoclonal antibodies against subunits of the glycine receptor complex (Pfeiffer, Simler, Grenningloh & Betz, 1984) to study the general localisation of glycine receptors in the CNS (e.g. Triller, Cluzead, Pfeiffer, Betz & Korn, 1985; Triller, Cluzead & Korn 1987; van den Pol & Gorcs, 1988). One of the antibodies used for such immuno-localisation studies is directed against gephyrin, a 93 kDa glycine receptor-associated, tubulin binding protein which is required for glycine receptor clustering and localisation at synaptic specialisations (Kirsch, Wolters, Triller & Betz, 1993b). In the mammalian ventral horn, gephyrin immunoreactivity has been shown to be localised to the sub-membrane cytoplasm, coincident with immunoreactivity against ligand binding subunits of the glycine receptor, and, importantly, is localised at sites corresponding to synaptic specialisations (see Triller et al., 1985 and unpublished observations from our laboratory). These properties make gephyrin a particularly useful marker for use in probing the organisation and distribution of glycine receptors in identified central neurones, as we will describe in this presentation.


Glycine Receptor Recurrent Inhibition Size Gradient Synaptic Specialisation Presynaptic Active Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aprison, M. H. (1990) The discovery of the neurotransmitter role of glycine. In Glycine Neurotransmission. eds Ottersen, O. P & Storm-Mathisen, J. pp1–23. Wiley, Chichester.Google Scholar
  2. Bailey, C. H. & Kandel, E. (1993) Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426.CrossRefPubMedGoogle Scholar
  3. Betz, H. (1991) Glycine receptors: heterogeneous and widespread in the mammalian brain. TINS 14, 458–461.PubMedGoogle Scholar
  4. Brown, A. G. & Fyffe, R. E. W. (1981) Direct observations on the contacts made between Ia afferent fibres and alpha motoneurones in the cat’s lumbosacral spinal cord. J. Physiol. 313, 121–140.PubMedGoogle Scholar
  5. Burke, R. E. (1987) Synaptic efficacy and the control of neuronal input-output relations. TINS 10, 42–45.Google Scholar
  6. Cullheim, S. & Kellerth, J.-O. (1981) Two kinds of recurrent inhibition of cat spinal motoneurones as differentiated pharmacologically. J. Physiol. 312, 209–224.PubMedGoogle Scholar
  7. Eccles, J. C., Fatt, P. & Koketsu, K. (1954) Cholinergic and inhibitory synapses in a pathway motor axon collaterals to motoneurones. J. Physiol. 126, 524–562.PubMedGoogle Scholar
  8. Ellaway, P. H. (1971) Recurrent inhibition of fusimotor neurones exhibiting background discharges in the decerebrate and spinal cat. J. Physiol. 216, 419–439.PubMedGoogle Scholar
  9. Fyffe, R. E. W. (1991a) Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat.J Neurophysiol. 65, 1134–1149.PubMedGoogle Scholar
  10. Fyffe, R. E. W. (1991b) Glycine-like immunoreactivity in synaptic boutons of identified inhibitory interneurons in the mammalian spinal cord. Brain Res. 547, 175–179.CrossRefPubMedGoogle Scholar
  11. Jankowska, E. (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38, 335–378.CrossRefPubMedGoogle Scholar
  12. Kirsch, J., Malosio, M.-L, Wolters, I. & Betz, H. (1993a) Distribution of gephyrin transcripts in the adult and developing rat brain. Eur. J. Neurosci. 5, 1109–1117.CrossRefPubMedGoogle Scholar
  13. Kirsch, J., Wolters, I., Triller, A. & Betz, H. (1993b) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748.CrossRefPubMedGoogle Scholar
  14. Malosio, M.-L., Marquèze-Pouey, B., Kuhse, J. & Betz, H. (1991b) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J. 10, 2401–2409.PubMedGoogle Scholar
  15. Moschovakis, A. K., Burke, R. E. & Fyffe, R. E. W. (1991) The size and dendritic structure of HRP-labeled gamma motoneurons in the cat spinal cord. J. Comp. Neurol. 311, 531–545.CrossRefPubMedGoogle Scholar
  16. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. (1984) Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl. Acad. Sci. USA 81, 7224–7227.CrossRefPubMedGoogle Scholar
  17. Pol Van Den, A. N. & Gorcs, T. (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord. J. Neurosci. 8, 472–492.Google Scholar
  18. Rall, W., Burke, R. E. Holmes, W. R., Jack, J. J. B., Redman, S. J. & Segev, I. (1992) Matching dendritic neuron models to experimental data. Physiol. Rev. 72, S159-S185.Google Scholar
  19. Redman, S. J. (1990) Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol. Rev. 70, 165–198.PubMedGoogle Scholar
  20. Renshaw, B. (1946) Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 9, 191–204.PubMedGoogle Scholar
  21. Schneider, S. P. & Fyffe, R. E. W. (1992) Involvement of Gaba and glycine in recurrent inhibition of spinal motoneurons. J. Neurophysiol. 68, 397–406.PubMedGoogle Scholar
  22. Segev I., Fleshman, J. W. & Burke, R. E. (1990) Computer simulation of group Ia EPSPs using morphologically realistic models of cat α-motoneurons. J. Neurophysiol. 64, 648–660.PubMedGoogle Scholar
  23. Todd, A. J. & Sullivan, A. C. (1990) Light microscope study of the coexistence of Gaba-like and glycine-like immunoreactivities in the spinal cord of the rat. J. Comp. Neurol. 296, 496–505.CrossRefPubMedGoogle Scholar
  24. Triller, A., Cluzeaud, F. & Korn, H. (1987) Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. J. Cell Biol. 104, 947–956.CrossRefPubMedGoogle Scholar
  25. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. (1985) Distribution of glycine receptors at central synapses: An immunoelectron microscopy study. J. Cell Biol. 101, 683–688.CrossRefPubMedGoogle Scholar
  26. Triller, A., Seitanidou, T., Franksson, O. & Korn, H. (1990) Size and shape of glycine receptor clusters in a central neuron exhibit a somato-dendritic gradient. The New Biologist. 2, 637–641.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Robert E. W. Fyffe
    • 1
  • Francisco J. Alvarez
    • 1
  • Deborah Harrington
    • 1
  • Dianne E. Dewey
    • 1
  1. 1.Department of AnatomyWright State UniversityDaytonUSA

Personalised recommendations