Effects of Electrotonic Spread of EPSPs on Synaptic Transmission in Motoneurones: A Simulation Study

  • D. M. Halliday


Distal synaptic inputs to motoneurones produce Post Synaptic Potentials (PSP) at the soma with longer rise times and half widths than proximal inputs. This is due to electrotonic spread of the PSP. Previous studies have concentrated on the time course of a single compound EPSP at the soma for a variety of pre-synaptic input configurations (e.g. Segev, Fleshman & Burke, 1990). The EPSP represents only an intermediate variable in determining the output discharge of a cell. Simulation studies with compartmental models of motoneurones were used to investigate the functional consequences of synaptic location on synaptic transmission during repetitive firing.


Spike Train Repetitive Firing Post Synaptic Potential Synaptic Location Coherence Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldissera, F. & Gustafsson, B. (1974). Afterhyperpolarization conductance time course in lumbar motoneurones of the cat. Acta physiol. scand. 91, 528–544.PubMedCrossRefGoogle Scholar
  2. Conway, B. A., Halliday, D. M. & Rosenberg, J. R. (1993). Detection of weak synaptic interactions between single Ia-afferents and motor-unit spike trains in the decerebrate cat. J. Physiol. 471, 379–409.PubMedGoogle Scholar
  3. Cope, T. C., Fetz, E. E. & Matsumura, M. (1987). Cross correlation assessment of synaptic strength of single Ia fibre connections with triceps surae motoneurones in cats. J. Physiol. 390, 161–188.PubMedGoogle Scholar
  4. Fleshman, J. R., Segev, I. & Burke, R. E. (1988). Electrotonic architecture of type-identified α-motoneurones in the cat spinal cord. J. Neurophysiol. 60, 60–85.PubMedGoogle Scholar
  5. Rosenberg, J. R., Amjad, A. M., Breeze, P., Brillinger, D. R. & Halliday, D. M. (1989). The Fourier approach to the identification of synaptic coupling between neuronal spike trains. Prog. Biophys. & Molecular Biol. 53, 1–31.CrossRefGoogle Scholar
  6. Segev, I., Fleshman, J. R. & Burke, R. E. (1989). Compartmental models of complex neurons. In Methods in Neuronal Modeling: From Synapses to Networks. eds Koch, C. & Segev, I. pp. 63–96. MIT Press, Cambridge and London.Google Scholar
  7. Segev, I., Fleshman, J. R. & Burke, R. E. (1990). Computer simulations of group Ia EPSP’s using morphologically realistic models of cat α-motoneurones. J. Neurophysiol. 64, 648–660.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. M. Halliday
    • 1
  1. 1.Department of PhysiologyGlasgow UniversityGlasgowUK

Personalised recommendations