Skip to main content

Hysteresis in Recurrent Inhibition and Proprioceptive Feedback: Do they Compensate for Hysteresis of Motor Units?

  • Chapter
Alpha and Gamma Motor Systems

Abstract

The problems to be solved by the CNS of higher animals in controlling its motor periphery are daunting. Thus, although there may be some indications that, at cortical level, movement trajectories are represented in kinematic terms and, at peripheral level, motoneurones activate muscles so as to produce forces or torques, little is known about the implementation of the required intermediate transformations. Mutatis mutandis, the same applies to rhythmic movements generated by central pattern generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. H. (1974) Dynamic characteristics of Golgi tendon organs. Brain Res. 67, 531–537.

    Article  PubMed  CAS  Google Scholar 

  • Baldissera, F., Campanelli, P. & Piccinelli, L. (1984) The dynamic response of α-motoneurones investigated by intracellular injection of sinusoidal current. Exp. Brain Res. 54, 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Baldissera, F., Hultborn, H. & Illert, M. (1981) Integration in spinal neuronal systems. In The Nervous System, ed. Brooks, V. B., pp. 509–595. American Physiological Society, Bethesda.

    Google Scholar 

  • Dueñas, S. H. & Rudomin, P. (1988) Excitability changes of ankle extensor group Ia and Ib fibers during fictive locomotion in the cat. Exp. Brain Res. 70, 15–25.

    PubMed  Google Scholar 

  • Hoffer, J. A., Sugano, N., Loeb, G. E., Marks, W. B., O’donovan, M. J. & Pratt, C. A. (1987) Cat hindlimb motoneurons during locomotion. II. Normal activity patterns. J. Neurophysiol. 57, 530–553.

    PubMed  CAS  Google Scholar 

  • Houk, J. C. & Rymer, W. Z. (1981) Neural control of muscle length and tension. In The Nervous System. ed. Brooks, V. B., pp. 257–323. American Physiological Society, Bethesda.

    Google Scholar 

  • Hultborn, H., Lipski, J., Mackel, R. & Wigström, H. (1988) Distribution of recurrent inhibition within a motor nucleus. I. Contribution from slow and fast motor units to the excitation of Renshaw cells. Acta physiol. scand. 134, 347–361.

    Article  PubMed  CAS  Google Scholar 

  • Kostyukov, A. I. & Cherkassky, V. L. (1992) Movement-dependent after-effects in the firing of the spindle endings from the de-efferented muscles of the cat hindlimb. Neuroscience 46, 989–999.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, G. E. & Levine, W. S. (1990) Linking musculoskeletal mechanics to sensorimotor neurophysiology. In Multiple Muscle Systems: Biomechanics and Movement Organization, eds. Winters, J. M. & Woo, S. L.-Y., pp. 165–181. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Partridge, L. D. (1966) Signal-handling characteristics of load-moving skeletal muscle. Am. J. Physiol. 210, 1178–1191.

    PubMed  CAS  Google Scholar 

  • Partridge, L. D. & Benton, L. A. (1981) Muscle, the motor. In The Nervous System. ed. Brooks, V. B., pp. 43–106. American Physiological Society, Bethesda.

    Google Scholar 

  • Pearson, K. G. & Collins D. F. (1993) Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J. Neurophysiol. 70, 1009–1017.

    PubMed  CAS  Google Scholar 

  • Pratt, C. A. & Jordan, L. M. (1987) Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J. Neurophysiol. 57, 56–71.

    PubMed  CAS  Google Scholar 

  • Prochazka, A., Trend, P., Hulliger, M. & Vincent, S. (1989) Ensemble proprioceptive activity in the cat step cycle: towards a representative look-up chart. Prog. Brain Res. 80, 61–74.

    Article  PubMed  CAS  Google Scholar 

  • Ross, H.-G., Cleveland, S. & Kuschmierz, A. (1982) Dynamic properties of Renshaw cells: equivalence of responses to step changes in recruitment and discharge frequency of motor axons. Pflügers Archiv 394, 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Windhorst, U. (1988) How brain-like is the spinal cord? Interacting cell assemblies in the nervous system. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Windhorst, U. (1993) A new concept of the role of proprioceptive and recurrent inhibitory feedback in motor control. In Robots and biological systems: towards a new bionics? ed. Dario, P., Sandini, G. & Aebischer, P., pp. 295–318. Springer, Berlin.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Windhorst, U. (1995). Hysteresis in Recurrent Inhibition and Proprioceptive Feedback: Do they Compensate for Hysteresis of Motor Units?. In: Taylor, A., Gladden, M.H., Durbaba, R. (eds) Alpha and Gamma Motor Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1935-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1935-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5793-3

  • Online ISBN: 978-1-4615-1935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics