Skip to main content

Is the Slow Component of Exercise \( (\dot V{o_2}) \) a Respiratory Adaptation to Anaerobiosis?

  • Chapter
Modeling and Control of Ventilation

Abstract

The increased rate of O2 consumption \( (\dot V{o_2}) \) during exercise reflects the rate of aerobic regeneration of adenosine triphosphate (ATP). In 1972, Whipp and Wasserman (9) reported that a steady-state for aerobic regeneration occurred by 3 minutes only for work rates below the lactic acidosis threshold (LAT).For work rates above the LAT, \( \dot V{o_2} \) continued to increase past 3 minutes, the rate quantified as the \( \dot V{o_2} \) increase between 3 and 6 minutes (\( \Delta \dot V{o_2} \)(6–3)). \( \Delta \dot V{o_2} \)(6–3) has a high linear correlation with blood lactate increase with the regression passing through the origin (8). Others (summarized in ref 8) have confirmed an association between blood lactate increase and the slow component, but a causal mechanism remains unclear. The slow component increase in \( \dot V{o_2} \), as illustrated in figure 1, could reflect either 1) a developing inefficiency in the aerobic regeneration of ATP, 2) an adaptation to an anaerobic state in which the O2, supply to the muscles was improving, thereby facilitating the aerobic regeneration of ATP, or 3) a combination of both processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casaburi, R., Storer, T.W., Ben-Dov, I. and Wasserman, K. Effect of endurance training on possible determinants of \({{\dot{V}}_{{{{O}_{2}}}}}\) during heavy exercise. J.Appl.Physiol. 62:199–207, 1987.

    PubMed  CAS  Google Scholar 

  2. Casaburi, R., Barstow, T.J., Robinson, T. and Wasserman, K. Influence of work rate on ventilatory and gas exchange kinetics. J. Appl. Physiol. 67:547–555, 1989.

    PubMed  CAS  Google Scholar 

  3. Gaesser, G.A. Influence of endurance training and catecholamines on exercise \({{\dot{V}}_{{{{O}_{2}}}}}\) response. Med. Sci. Sports Exerc. 26:1341–1346, 1994.

    PubMed  CAS  Google Scholar 

  4. Koike, A., Wasserman, K., Taniguchi, K. and Hiroe, M. Critical capillary oxygen partial pressure and lactate threshold in patients with cardiovascular disease. J. Am. Coll. Cardiol. 23:1644–1650, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Lewis, S.F. and Haller, R.G. The pathophysiology of McArdle’s disease: clues to regulation in exercise and fatigue. J. Appl. Physiol. 61:391–401, 1986.

    PubMed  CAS  Google Scholar 

  6. Poole, D.C., Gladden, L.B., Kurdak, S. and Hogan, M.C. L(+)-Lactate infusion into working dog gastrocnemius: no evidence lactate per se mediates \({{\dot{V}}_{{{{O}_{2}}}}}\) slow component. J. Appl. Physiol. 76:787–792, 1994.

    PubMed  CAS  Google Scholar 

  7. Stringer, W.W., Wasserman, K., Casaburi, R. Porszasz, J., Maehara, K. and French, W. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise. J. Appl. Physiol. 76:1562–1567, 1994.

    Google Scholar 

  8. Wasserman, K. Coupling of external to cellular respiration during exercise: the wisdom of the body revisited. Am. J. Physiol. 266:E519–E539, 1994.

    PubMed  CAS  Google Scholar 

  9. Whipp, B.J. and Wasserman, K. Oxygen uptake kinetics for various intensities of constant-load work. J. Appl. Physiol. 33:351–356, 1972.

    PubMed  CAS  Google Scholar 

  10. Whipp, B.J. and Wasserman, K. Effect of anaerobiosis on the kinetics of O2 uptake during exercise. Federation Proc. 45:2942–2947, 1986

    CAS  Google Scholar 

  11. Wittenberg, B.A. and Wittenberg, J.B. Transport of oxygen in muscle. Ann. Rev. Physiol. 51:857–878, 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wasserman, K., Stringer, W.W., Casaburi, R. (1995). Is the Slow Component of Exercise \( (\dot V{o_2}) \) a Respiratory Adaptation to Anaerobiosis?. In: Semple, S.J.G., Adams, L., Whipp, B.J. (eds) Modeling and Control of Ventilation. Advances in Experimental Medicine and Biology, vol 393. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1933-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1933-1_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5792-6

  • Online ISBN: 978-1-4615-1933-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics