Type I Medial Vestibular Neurons During Alertness, Following Adaptation, and During Rem Sleep Episodes in the Head-Fixed Guinea-Pig

  • M. Serafin
  • M. Mühlethaler
  • P. P. Vidal

Abstract

The horizontal vestibulo-ocular reflex (HVOR) and vestibulo-collic reflex (HVCR) contribute to gaze stabilization during head movements in the horizontal plane (Baker et al., 1981; Berthoz, 1989). During head rotations, sensory inputs from the horizontal semicircular canals of the labyrinth modulate the discharge of the first-order vestibular neurons in proportion to head velocity (Curthoys, 1982; Fernandez and Goldberg, 1971). These primary afferents contact monosynaptically the second-order vestibular neurons located in the central vestibular nuclei, which in turn project to the prepositus hypoglossi neurons, and to the appropriate extraocular and spinal motoneuron pools in order to implement the vestibuloocular and vestibulo-spinal reflexes. Whereas part of the second-order vestibular neurons are inhibitory and project through ipsilateral pathways (reviewed in Uchino and Isu, 1992a), another subgroup of second-order vestibular neurons are excitatory and project through contralateral pathways (Berthoz et al., 1989; Iwamoto et al., 1990; McCrea et al., 1987; Uchino et al., 1981,1982; Uchino and Isu, 1992b). According to their axonal projections to the extraocular and neck motor nuclei, the excitatory second-order vestibular neurons have been classified into three distinct groups (reviewed in Uchino and Isu, 1992b): the vestibuloocular neurons, which project exclusively towards cells within the contralateral abducens nucleus, the vestibulo-collic neurons, which project exclusively towards contralateral neck and spinal motoneurons and, finally, the vestibulo-oculo-collic neurons, which project contralaterally towards both the abducens and neck motor nuclei (Isu and Yokota, 1983;McCrea et al.,1987;Uchino et al.,1982).

Keywords

Neurol Cali Nembutal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelaki, D.E., and Perachio A.A., 1993, Contribution of semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation, J. Neurophysiol. 69:996–999.PubMedGoogle Scholar
  2. Azzena, G.B., Mameli, O., and Tolu, E., 1976, Vestibular nuclei of hemilabyrinthectomized guinea pigs during decompensation, Arch. Ital. Biol. 114:389–398.PubMedGoogle Scholar
  3. Baker, R., and Berthoz, A., 1974, Organization of vestibular nystagmus in the oblique oculomotor system,J. Neurophysiol. 37:195–217.PubMedGoogle Scholar
  4. Baker, R., Evinger, C., and McCrea, R.A., 1981, Some thoughts about the three neurons in the vestibulo-ocular reflex, Ann. NY Acad. Sci. 374:171–188.PubMedCrossRefGoogle Scholar
  5. Baker, R.A., Pastor, A.M., De La Cruz, R.R., and Simpson, J.I., 1992, Purkinje cell eye and head velocity sensitivity are not altered during VOR adaptation, Soc. Neurosci. Abstracts 18, 178.5, 407.Google Scholar
  6. Berthoz, A., 1989, Coopération et substitution entre le système saccadique et les “réflexes” d’origine vestibulaire: faut-il réviser la notion de réflexe?, Rev. Neurol. (Paris) 145:513–526.Google Scholar
  7. Berthoz, A., Droulez, J., Vidal, RP., and Yoshida, K.,1989, Neural correlates of horizontal vestibulo-ocular reflex cancellation during rapid eye movements in the cat, J Physiol. (London) 419:717–751.Google Scholar
  8. Bizzi, E., Pompeiano, O., and Somogyi, I., 1964a, Vestibular nuclei: activity of single neurons during naturalsleep and wakefulness, Science 145:414–415.CrossRefGoogle Scholar
  9. Bizzi, E., Pompeiano, O., and Somogyi, I., 1964b, Spontaneous activity of single vestibular neurons of unrestrained cats during sleep and wakefulness, Arch. Ital. Biol. 102:308–330.Google Scholar
  10. Boyle, R., Goldberg, J.M., and Highstein, S.M., 1992, Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways, J. Neurophysiol. 68:471–484.PubMedGoogle Scholar
  11. Bussières, N., and Dubuc, R., 1992, Phasic modulation of vestibulospinal neuron activity during fictive locomotion in lampreys, Brain Res. 575:174–179.PubMedCrossRefGoogle Scholar
  12. Collewijn, H., and Grootendorst, A.F., 1979, Adaptation of optokinetic and vestibulo-ocular reflexes to modified visual input in the rabbit. In: Reflex control of posture and movement, Granit, R., and Pompeiano, O. (eds.). Amsterdam, Elsevier, pp 771–781.CrossRefGoogle Scholar
  13. Curthoys, I.S., 1982, The response of primary horizontal semicircular canal neurones in the rat and guinea-pig to angular acceleration, Exp. Brain Res. 47:286–294.PubMedGoogle Scholar
  14. Curthoys, I.S., Curthoys, E.J., Blanks, R.H.I., and Markham, C.H., 1975, The orientation of the semi-circular canals in the guinea-pig, Acta Otolaryngol. (Stockholm) 80:197–205.CrossRefGoogle Scholar
  15. Duensing, F., and Schaefer, K.P., 1958, Die aktivität einzelner neuron im bereich der vestibulariskerne bei horizontal-beschleunigungen unter besonderer berticksichtigung des vestibulären nystagmus, Arch. Psychiatr. Nervenkr. 198:225–252.CrossRefGoogle Scholar
  16. du Lac, S., and Lisberger, S.G., 1992, Eye movements and brainstem neuronal responses evoked by cerebellar and vestibular stimulation in chicks, J. Comp. Physiol. 171:629–638.CrossRefGoogle Scholar
  17. Escudero, M., De la Cruz, R.R., and Delgado-Garcia, J.M., 1992, A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat, J. Physiol. (London) 458:538–560.Google Scholar
  18. Escudero, M., de Waele, C., Vibert, N., Berthoz, A., and Vidal P.P., 1993, Saccadic eye movements and horizontal vestibulo-ocular and vestibulo-collic reflexes in the intact guinea-pig, Exp. Brain Res. 97:254–262.PubMedCrossRefGoogle Scholar
  19. Escudero, M., and Vidal, P.P., 1992, Eye movements during paradoxical sleep in guinea pig, Soc. Neurosci. Abstracts 18, 92.8, 196.Google Scholar
  20. Ezure, K., Schor, R.H., and Yoshida, K., 1978, The response of horizontal semicircular canal afferents to sinusoidal rotation in the cat, Exp. Brain Res. 33:27–39.PubMedCrossRefGoogle Scholar
  21. Fernandez, C., and Goldberg, J.M., 1971, Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system, J. Neurophysiol. 34:661–675.PubMedGoogle Scholar
  22. Fuchs, A.F., and Kimm, J., 1975, Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement, J. Neurophysiol. 38:1140–1161.PubMedGoogle Scholar
  23. Fuchs, A., and Robinson, D.A., 1966, A method for measuring horizontal and vertical eye movements chronically in the monkey, J. Appl. Physiol. 21:1068–1070.PubMedGoogle Scholar
  24. Godaux, E., and Cheron, G., 1993, Testing the common neural integrator hypothesis at the level of the individual abducens motoneurones in the alert cat, J. Physiol. (London) 469:549–570.Google Scholar
  25. Godaux, E., Halleux, J., and Gobert, C., 1983, Adaptative change of the vestibulo-ocular reflex in the cat: the effects of a long-term frequency-selective procedure, Exp. Brain Res. 49:28–34.PubMedCrossRefGoogle Scholar
  26. Goldberg, J.M., and Fernandez, C., 1971, Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties, J. Neurophysiol. 34:676–684.PubMedGoogle Scholar
  27. Goldberg, J.M., Highstein, S.M., Moschovakis, A.K., and Fernandez, C., 1987, Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. I. An electrophysiological analysis, J. Neurophysiol. 58:700–718.PubMedGoogle Scholar
  28. Highstein, S.M., Goldberg, J.M., Moschovakis, A.K., and Fernandez, C., 1987, Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons, J. Neurophysiol. 58:719–738.PubMedGoogle Scholar
  29. Hikosaka, O., Maeda, M., Nakao, S., Shimazu, H., and Shinoda, Y., 1977, Presynaptic impulses in the abducens nucleus and their relation to postsynaptic potentials in motoneurons during vestibular nystagmus, Exp. Brain Res. 27:355–376.PubMedGoogle Scholar
  30. Hikosaka, O., Nakao, S., and Shimazu, H., 1980, Postsynaptic inhibition underlying spike suppression of secondary vestibular neurons during quick phases of vestibular nystagmus, Neurosci. Letters 16:21–26.CrossRefGoogle Scholar
  31. Ishizuka, N., Mannen, H., Sasaki, S., and Shimazu, H., 1980, Axonal branches and terminations in the cat abducens nucleus of secondary vestibular neurons in the horizontal canal system, Neurosci. Letters 16:143–148.CrossRefGoogle Scholar
  32. Isu, N., and Yokota, J., 1983, Morphophysiological study of the divergent projection of axon collaterals of medial vestibular nucleus neurons in the cat, Exp. Brain Res. 53:151–162.PubMedCrossRefGoogle Scholar
  33. Ito, M., 1982, Cerebellar control of the vestibulo-ocular reflex - around the flocculus hypothesis, Annu. Rev. Neurosci. 5:275–296.PubMedCrossRefGoogle Scholar
  34. Ito, M., 1993, Cerebellar flocculus hypothesis, Nature 363:24–25.PubMedCrossRefGoogle Scholar
  35. Iwamoto, Y., Kitama, T., and Yoshida, K., 1990a, Vertical eye movement-related secondary vestibular neurons ascending in medial longitudinal fasciculus in cat. I. Firing properties and projection pathways, J. Neurophysiol. 63:902–917.Google Scholar
  36. Iwamoto, Y., Kitama, T., and Yoshida, K., 1990b, Vertical eye movement-related secondary vestibular neurons ascending in medial longitudinal fasciculus in cat. II. Direct connections with extraocular motoneurons, J. Neurophysiol. 63:918–935.Google Scholar
  37. Kawato, M., and Gomi, H., 1992, The cerebellum and VOR/OKR learning models, TINS 15:445–453.PubMedGoogle Scholar
  38. Lisberger, S.G., 1988, The neural basis for the learning of simple motor skills, Science 242:728–735.PubMedCrossRefGoogle Scholar
  39. Lisberger, S.G., 1994, Neural basis for motor learning in the vestibuloocular reflex of primates. III. Compu-tational and behavioral analysis of sites of learning, J. Neurophysiol. 72:974–998.PubMedGoogle Scholar
  40. Lisberger, S.G., and Miles, F.A., 1980, Role of primate medial vestibular nucleus in long-term adaptive plasticity of vestibuloocular reflex, J. Neurophysiol. 43:1725–1745.PubMedGoogle Scholar
  41. Lisberger, S.G., Miles, F.A., and Optican, L.M., 1983, Frequency-selective adaptation: evidence for channels in the vestibulo ocular reflex ?, J. Neurosci. 3:1234–1244.PubMedGoogle Scholar
  42. Lisberger, S.G., and Pavelko T.A., 1988, Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex, Science 242:771–773.PubMedCrossRefGoogle Scholar
  43. Lisberger, S.G., Pavelko, T.A., Bronte-Stewart, H.M., and Stone, L.S., 1994c, Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and the ventral paraflocculus, J. Neurophysiol. 72:954–973.Google Scholar
  44. Lisberger, S.G., Pavelko, T.A., and Broussard, D.M., 1994a, Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and the ventral paraflocculus in monkeys, J. Neurophysiol. 72:909–927.Google Scholar
  45. Lisberger, S.G., Pavelko, T.A., and Broussard, D.M., 1994b, Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons, J. Neurophysiol. 72:928–953.Google Scholar
  46. Lisberger, S.G., and Sejnowski, T.J., 1992, Motor learning in a recurrent network model based on the vestibulo-ocular reflex, Nature 360:159–161.PubMedCrossRefGoogle Scholar
  47. Lisberger, S.G., and Sejnowski, T.J., 1993, Cerebellar flocculus hypothesis, Nature 363:25.CrossRefGoogle Scholar
  48. Maeda, M., Shimazu, H., and Shinoda, Y., 1972, Nature of synaptic events in cat abducens motoneurons at slow and quick phase of vestibular nystagmus, J. Neurophysiol. 35:279–296.PubMedGoogle Scholar
  49. Marlinsky, V.V., 1992, Activity of lateral vestibular nucleus neurons during locomotion in the decerebrate guinea pig, Exp. Brain Res. 90:583–588.PubMedCrossRefGoogle Scholar
  50. McCrea, R.A., Strassman, A., May, E., and Highstein, S.M., 1987, Anatomical and physiological characteristics of vestibular neurones mediating the horizontal vestibulo-ocular reflex of the squirrel monkey, J. Comp. Neurol. 264:547–570.CrossRefGoogle Scholar
  51. McCrea, R.A., Yoshida, K., Berthoz, A., and Baker, R., 1980, Eye movement related activity and morphology of second-order vestibular neurons terminating in the cat abducens nucleus, Exp. Brain Res. 40:468–473.Google Scholar
  52. Melvill Jones, G., 1985, Adaptive modulation of VOR parameters by vision. In: Adaptive mechanisms in gaze control. Facts and theories. Berthoz, A., and Melvill Jones, G. (eds). Elsevier, New York, pp 21–50.Google Scholar
  53. Melvill Jones, G., and Milsum, J.H., 1970, Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats, J. Physiol. (London) 209:295–316.Google Scholar
  54. Miles, F.A., and Braitman, D.J., 1980, Long-term adaptive changes in primate vestibuloocular reflex. II. Electrophysiological observations on semicircular canal primary afferents, J. Neurophysiol. 43:1426–1436.PubMedGoogle Scholar
  55. Miles, F.A., Fuller, J.H., Braitman, D.J., and Dow, B.M., 1980, Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkey, J. Neurophysiol. 43:1437–1476.PubMedGoogle Scholar
  56. Miles, F.A., and Lisberger, S.G., 1981, Plasticity in the vestibuloocular reflex: a new hypothesis, Annu. Rev. Neurosci. 4:273–299.PubMedCrossRefGoogle Scholar
  57. Minor, L.B., and Goldberg, J.M., 1991, Vestibular-nerve inputs to the vestibulo-ocular reflex: a functional-ablation study in the squirrel monkey, J. Neurosci. 11:1636–1648.PubMedGoogle Scholar
  58. Mühlethaler, M., de Curtis, M., Walton, K., and Llinás, R., 1993, The in vitro isolated and perfused guinea-pig brain, Eur.J. Neurosci. 5:915–926.PubMedCrossRefGoogle Scholar
  59. Nakao, S., Sasaki, S., Schor, R.H., and Shimazu, H., 1982, Functional organization of premotor neurons in the cat medial vestibular nucleus related to slow and fast phases of nystagmus, Exp. Brain Res. 45:371–385.PubMedCrossRefGoogle Scholar
  60. Orlovsky, G.N., 1972, Activity of vestibulospinal neurons during locomotion, Brain Res. 46:85–98.PubMedCrossRefGoogle Scholar
  61. Paige, G.D., and Sargent, E.W., 1991, Visually-induced adaptive plasticity in the human vestibulo-ocular reflex, Exp. Brain Res. 84:25–34.PubMedCrossRefGoogle Scholar
  62. Partsalis, A.M., Zhang, Y., and Highstein, S.M., 1993, The Y group in vertical visual-vestibular interactions and VOR adaptation in the squirrel monkey, Soc. Neurosci. Abstracts 19, 60.2, 138.Google Scholar
  63. Pastor, A.M., De La Cruz, R., and Baker, R., 1992, Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation, J. Neurophysiol. 68:2003–2015.PubMedGoogle Scholar
  64. Pastor, A.M., De La Cruz, R.R., and Baker, R., 1993, Cerebellectomy reveals that storage and expression of vestibulo-ocular reflex adaptation occurs in the brainstem, Soc. Neurosci. Abstracts 19, 401.4, 982.Google Scholar
  65. Rapisarda, C., and Bacchelli, B., 1977, The brain of the guinea-pig in stereotaxic coordinates, Arch. Sci. Biol.61:1–37.Google Scholar
  66. Sasaki, S., and Shimazu, H., 1981, Reticulovestibular organization participating in generation of horizontal fast eye movements, Ann. NY Acad. Sci. 374:130–143.PubMedCrossRefGoogle Scholar
  67. Sato, F., and Sasaki, H., 1993, Morphological correlation between spontaneously discharging primary vestibular afferents and vestibular nucleus neurons in the cat, J. Comp. Neurol. 333:554–566.PubMedCrossRefGoogle Scholar
  68. Scudder, C.A., and Fuchs, A.F., 1992, Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys, J. Neurophysiol. 69:244–264.Google Scholar
  69. Serafin, M., de Wade, C., Khateb, A., Vidal, P.P., and Mühlethaler, M., 1991a, Medial vestibular nucleus in the guinea-pig: I. Intrinsic membrane properties in brainstem slices, Exp. Brain Res. 84:417–425.CrossRefGoogle Scholar
  70. Serafin, M., de Waele, C., Khateb, A., Vidal, P.P., and Miihlethaler, M., 1991b, Vestibular nuclei neurons in the guinea-pig: II. Ionic basis of the intrinsic membrane properties in brainstem slices, Exp. Brain Res. 84:426–433.CrossRefGoogle Scholar
  71. Serafin, M., Khateb, A., de Waele, C., Vidal, P.P., and Miihlethaler, M., 1992a, Electrophysiology and pharmacology of 2 types of neurons in the medial vestibular nucleus and in the nucleus gigantocellularis of the guinea-pig in vitro, In: The head-neck sensory motor system, Berthoz, A., Graf, W., and Vidal, P.P. (eds). Oxford University Press, New-York, pp 244–250.CrossRefGoogle Scholar
  72. Serafin, M., de Waele, C., Khateb, A., Vidal, P.P., and Mühlethaler, M., 1992b, Medial vestibular nucleus in the guinea-pig. NMDA-induced oscillations, Exp. Brain Res. 88:187–192.CrossRefGoogle Scholar
  73. Shimazu, H., and Precht, W., 1965, Tonic and kinetic responses of cat’s vestibular neurons to horizontal angular acceleration, J. Neurophysiol. 28:991–1013.PubMedGoogle Scholar
  74. Shimazu, H., and Precht, W., 1966, Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway, J Neurophysiol. 29:467–492.PubMedGoogle Scholar
  75. Shinoda, Y., and Yoshida, K., 1974, Dynamic characteristics of responses to horizontal head angular acceleration in vestibuloocular pathway in the cat, J. Neurophysiol. 37:653–673.PubMedGoogle Scholar
  76. Uchino, Y., Hirai, N., and Suzuki, S., 1982, Branching pattern and properties of vertical-and horizontal-related excitatory vestibuloocular neurons in the cat, J. Neurophysiol. 48:891–903.PubMedGoogle Scholar
  77. Uchino, Y., Hirai, N., Suzuki, S., and Watanabe, S., 1981, Properties of secondary vestibular neurons fired by stimulation of ampullary nerve of the vertical, anterior or posterior, semicircular canals in the cat, Brain Res. 223:273–286.PubMedCrossRefGoogle Scholar
  78. Uchino, Y., and Isu, N., 1992a, Properties of inhibitory vestibulo-ocular and vestibulo-collic neurons in the cat. In: Vestibular and brainstem control of eye, head and body movements. Shimazu, H., and Shinoda, Y. (eds), Jpn. Sci. Soc. Press, Tokyo, pp 31–43.Google Scholar
  79. Uchino Y, and Isu, N., 1992b, Properties of vestibulo-ocular and/or vestibulo-collic neurons in the cat. In: The head-neck sensory motor system. Berthoz, A., Graf, W., and Vidal, P.P. (eds), Oxford, Oxford, pp 266–272.CrossRefGoogle Scholar
  80. de Waele, C., Serafin, M., Khateb, A., Yabe, T., Vidal, P.P., and Mahlethaler, M., 1993, Medial vestibular nucleus in the guinea-pig: apamin-induced rhythmic burst firing. An in vitro and in vivo study, Exp. Brain Res. 95:213–222.PubMedCrossRefGoogle Scholar
  81. Yagi, T., and Ueno, H.,1988, Behavior of primary horizontal canal neurons in alert and anesthetized guinea pigs, Exp. Neurol. 101:356–365.PubMedCrossRefGoogle Scholar
  82. Yoshida, K., Berthoz, A., Vidal, P.P., and McCrea, R., 1981, Eye movement related activity of identified second order vestibular neurons in the cat. In: Progress in Oculomotor Research, Developments in Neuroscience. Fuchs, A. and Becker. W. (eds). Elsevier, Amsterdam, pp 371–378.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Serafin
    • 1
  • M. Mühlethaler
    • 2
  • P. P. Vidal
    • 1
  1. 1.Laboratoire de Physiologie de la Perception et de l’ActionCNRS-Collège de France UMR C-9950Paris Cedex 06France
  2. 2.Département de PhysiologieCMUGenève 4Switzerland

Personalised recommendations