Skip to main content

Characteristics of Intraspinal Grafts and Locomotor Function after Spinal Cord Injury

  • Chapter
Neural Cell Specification

Part of the book series: Altschul Symposia Series ((ALSS,volume 3))

Abstract

It is well established that fetal neural tissue placed into acute lesions in both the newborn and adult rat spinal cord undergoes extensive differentiation and survives for extended periods (Bregman and Reier, 1986; Das, 1983a; Gelderd and Quarles, 1990; Himes et al., 1994; Jakeman and Reier, 1989; Nornes et al., 1983; Nothias and Pechanski, 1990; Nygren et al., 1977; Patel and Bernstein, 1983; Privat et al., 1986, Privat et al., 1989; Reier et al., 1986; Sieradzan and Vrbova, 1989). Projections from long-tract and segmental host systems, as well as neurons in the fetal graft, grow across the host-graft interface (Bernstein-Goral and Bregman, 1993; Björklund et al., 1986; Bregman, 1987; Foster et al., 1985; Itoh et al., 1993; Itoh and Tessler, 1989, Itoh et al., 1990; Jakeman and Reier, 1987a,Jakeman and Reier, 1987b, Jakeman and Reier, 1989, Jakeman and Reier, 1991; Nothias and Pechanski, 1990; Privat et al., 1986; Reier et al., 1986; Tessler et al., 1988). In adult animals, long-tract host systems that grow into the graft for short distances (Reier et al., 1986) in combination with axons from the graft that project into host motoneuron pools (Jakeman and Reier, 1991) may provide the anatomical basis for a functional relay between the host and graft. The active participation of the graft in relaying neuronal information is only one of several potential mechanisms by which fetal grafts may affect function. Grafts may also enhance function by supplying depleted transmitters (Björklund et al., 1986; Buchanan and Nornes, 1986; Foster et al., 1989; Privat et al., 1989), by providing trophic support (Arenas and Persson, 1994; Bregman, 1988; Bregman and Reier, 1986; Himes et al., 1994), by promoting sprouting (Schnell et al., 1994) or by myelinating demyelinated axons (Rosenbluth et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alstermark B, Lundberg A, Pettersson LG, Tantisira B and Walkowska M (1987): Motor recovery after serial spinal cord lesions of defined descending pathways in cats. Neurosci Res 5: 68–73.

    Article  PubMed  CAS  Google Scholar 

  • Anderson DK, Braughler JM, Hall ED, Waters TR, McCall JM and Means ED (1988a): Effects of treatment with U-74006F on neurological outcome following experimental spinal cord compression injury. J Neurosurg 69: 562–567.

    Article  CAS  Google Scholar 

  • Anderson DK and Thomas CE (1994): Mechanisms and role of oxygen free radicals in CNS pathology. In: “Recent Advances in the Treatment of Neurodegenerative Disorders and Cognitive Dysfunction” Proceedings of the International Academy for Biomedical and Drug Research CINP President’s Workshop. S Karger AG, Basal, vol. 7, pp 119–124.

    Google Scholar 

  • Anderson DK, Waters TR and Means ED (1988b): Pretreatment with alpha tocopherol enhances neurological recovery after experimental spinal cord compression injury. J Neurotrauma 5: 61–68.

    Article  CAS  Google Scholar 

  • Anderson DK, Means ED, Waters TR and Spears CJ (1980): Spinal cord energy metabolism following compression trauma to the feline spinal cord. J. Neurosurg 53: 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Anderson DK, Prockop LD, Means ED and Hartley LE (1976): Cerebrospinal fluid lactate and electrolyte levels following experimental spinal cord injury. J Neurosurg 44: 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Anderson DK, Reier PJ, Wirth III ED, Theele DP, Mareci T and Brown SA (1991): Delayed grafting of fetal CNS tissue into chronic compression lesions of the adult spinal cord. Restor Neurol Neurosci 2: 309–325.

    PubMed  CAS  Google Scholar 

  • Anderson DK, Saunders RD, Demediuk P, Dugan LL, Braughler JM, Hall ED, Means ED and Horrocks LA (1985): Lipid hydrolysis and peroxidation in injured spinal cord. Partial protection with methylprednisolone and vitamin E. CNS Trauma 2: 257–267.

    CAS  Google Scholar 

  • Arenas E and Persson H (1994): Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Nature 367: 368–371.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM (1988): The supraspinal control of mammalian locomotion. J. Physiol 405: 1–37.

    PubMed  CAS  Google Scholar 

  • Barbeau H and Rossignol S (1991): Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by nonadrenergic, serotonergic, and dopaminergic drugs. Brain Res 546: 250–260.

    Article  PubMed  CAS  Google Scholar 

  • Barrett CP, Donati EJ and Guth, L (1984): Differences between adult and neonatal rats in their astroglial response to spinal injury. Exp Neurol 84: 374–385.

    Article  PubMed  CAS  Google Scholar 

  • Barres BA, Loroshetz WJ, Chun LL and Corey DP (1990): Ion channel expression by white matter glia: the type-1 astrocyte. Neuron 5: 527–544.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein-Goral H and Bregman BS (1993): Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: A quanitative double labelling study. Exp Neurol 23: 118–132.

    Article  Google Scholar 

  • Björklund A, Nornes H and Gage FH (1986): Cell suspension grafts of noradrenergic locus coeruleus neurons in rat hippocampus and spinal cord: Reinnervation and transmitter turnover. Neuroscience 18: 685–698.

    Article  PubMed  Google Scholar 

  • Blight AR (1983a): Cellular morphology of chronic spinal cord injury in the cat: Analysis of myelinated axons by line-sampling. Neuroscience 10: 521–543.

    Article  CAS  Google Scholar 

  • Blight AR (1983b): Axonal physiology of chronic spinal cord injury in the cat: Intracellular recording in vitro. Neuroscience 10: 1471–1486.

    Article  CAS  Google Scholar 

  • Blight AR (1989): Effect of 4-aminopyridine on axonal conduction-block in chronic spinal cord injury. Brain Res Bull 22: 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Blight AR, Toombs JP, Bauer MS and Widmer WR (1991): The effects of 4aminopyridine on neurological deficits in chronic cases of traumatic spinal cord injury in dogs: A phase I clinical trial. J Neurotrauma 8: 103–118.

    Article  PubMed  CAS  Google Scholar 

  • Bregman BS (1987): Spinal cord transplants permit growth of serotonergic axons across the site of neonatal spinal cord transections. Dev Brain Res 34: 265–279.

    Article  Google Scholar 

  • Bregman BS (1988): Requirements of immature axotomized CNS neurons for survival and axonal elongation after injury. In PJ Reier, RP Bunge and FJ Seil (eds): “Neurology and Neurobiology: Current Issues in Neural Regeneration Research.” Alan R. Liss: New York, pp. 75–87.

    Google Scholar 

  • Bregman BS and Kunkel-Bagden E (1988): Effect of target and non-target transplants on neuronal survival and axonal elongation after injury to the developing spinal cord. In DM Gash and JR Sladek, Jr (eds.) ‘Progress in Brain Res’ Elsevier: Amsterdam, pp. 205–211.

    Google Scholar 

  • Bregman BS, Kunkel-Bagden E, Reier PJ, Dai HN, McAtee M and Gao D (1993): Recovery of function after spinal cord injury: Mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp Neurol 123: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Bregman BS and Reier PJ (1986): Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death. J Comp Neurol 244: 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Brundin P, Isacson O and Björklund A (1985): Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res 331: 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan JT and Nornes HO (1986): Transplants of embryonic brainstem containing the locus coeruleus into spinal cord enhances the hindlimb flexion reflex in adult rats. Brain Res 381: 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Das GD (1983): Neural transplantation in the spinal cord of adult rats. J Neurol Sci 62: 191–210.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB and Richards SJ (1990): Neural Transplantation: From Molecular Basis To Clinical Applications. Prog Brain Res Volume 82: Amsterdam: Elsevier.

    Google Scholar 

  • Edgerton VR, Ray RR, Hodgson JA, Prober RJ, Camille P, de Guzman CP and de Leon R (1992): Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input, In Jane JA, Anderson DK, Torner JC and Young W (eds): “Central Nervous System Trauma Status Report”. J Neurotrauma 9 (Supp 1): 5119–5128.

    Google Scholar 

  • Faden AI and Jacobs TP (1985): Effect of TRH analogs on neurologic recovery after experimental spinal trauma. Neurol 35: 1331–1334.

    Article  CAS  Google Scholar 

  • Foster GA, Schultzberg M, Gage FH, Björklund A, Hokfelt T, Nornes H, Cuello AC, Verhofstad AAJ and Visser T J (1985): Transmitter expression and morphological development of embryonic medullary and mesencephalic raphe neurones after transplantation to the adult rat central nervous system. Exp Brain Res 60: 427–444.

    Article  PubMed  CAS  Google Scholar 

  • Foster GM, Roberts MHT, Wilkinson LS, Björklund A, Gage FH, Hokfelt R, Schultzberg M and Sharp T (1989): Structural and functional analysis of raphe neurone implants into denervated rat spinal cord. Brain Res Bull 22: 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Gash DM and Sladek Jr JR (1988): Transplantation into the mammalian CNS. Prog. in Brain Res. Vol. 78, Amsterdam: Elsevier.

    Google Scholar 

  • Gelderd JB and Quarles JE (1990): A preliminary study of homotopic fetal cortical and spinal cotransplants in adult rats. Brain Res Bull 25: 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Goldberger ME,Bregman BS, Vierck, Jr CK, and Brown M (1990): Criteria for assessing recovery of function after spinal cord injury: Behavioral methods. Exp Neurol 107: 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Grillner S (1973): Locomotion in the spinal cat, In Stein RB, Pearson KG, Smith RS and Redford JB (eds): “Control of Posture and Locomotion,” Advances in Behavorial Biology, Vol 7. Plenum Press: New York, pp 515–535.

    Chapter  Google Scholar 

  • Grillner S (1975): Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55: 247–304.

    Article  PubMed  CAS  Google Scholar 

  • Hall ED and Braughler MJ (1982): Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and (Na+ + K+)-ATPase activity. J Neurosurg 57: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Hansebout RR, Blight AR, Fawcett S and Reddy K (1993): 4-Aminopyridine in chronic spinal cord injury: A controlled, double-blind, crossover study in eight patients. J Neurotrauma 10: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Himes BT, Goldberger ME and Tessler A (1994): Grafts of fetal central nervous system tissue rescue axotomized Clarke’s nucleus neurons in adult and neonatal operates. J Comp Neurol 339: 117–131.

    Article  PubMed  CAS  Google Scholar 

  • Howland DR, Bregman BS, Tessler A and Goldberger ME (1995): Transplants enhance locomotion in neonatal kittens whose spinal cords are transected. Expt. neurol. in press.

    Google Scholar 

  • Itoh Y and Tessler A (1989): Ultrastructural organization of regenerated adult dorsal root axons within transplants of fetal spinal cord. J Comp Neurol 292: 396–411.

    Article  Google Scholar 

  • Itoh Y and Tessler A (1990): Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain - a comparison of growth and synapse formation in appropriate and inappropriate targets. J Comp Neurol 302: 272–293.

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Sugaware T, Kowda M and Tessler A (1993): Time course of dorsal root axon regeneration into transplants of fetal spinal cord: An electron microscopic study. Exp Neurol 123:,133–146.

    Article  PubMed  CAS  Google Scholar 

  • Jakeman LB and Reier PJ (1987a): Interactions between corticospinal tract axons and fetal CNS transplants in the adult rat. Schmitt Neurol Symposium, University of Rochester, Rochester, New York.

    Google Scholar 

  • Jakeman L and Reier PJ (1987b): The response of corticospinal tract fibers following injury and transplantation in the adult rat spinal cord. Soc Neurosci Abst 13: 750.

    Google Scholar 

  • Jakeman LB and Reier PJ (1989): Regeneration or sprouting of corticospinal tract axons into fetal spinal cord transplants in the adult rat. Soc Neurosci Abst 15: 1242.

    Google Scholar 

  • Jakeman LB and Reier Pi (1991): Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: A neuroanatomical tracing study of local interactions. J Comp Neurol 307: 311–334.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel-Bagden E and Bregman BS (1990): Spinal cord transplants enhance the recovery of locomotor function after spinal cord injury at birth. Exp Brain Res 81: 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel-Bagden E, Dai HN and Bregman BS (1993): Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp Neurol 119: 153–164.

    Article  PubMed  CAS  Google Scholar 

  • Liu CN and Chambers WW (1958): Intraspinal sprouting of dorsal root axons. Arch Neurol Psychiat 49: 46–61.

    Article  Google Scholar 

  • Means ED and Anderson DK (1987): The pathophysiology of acute spinal cord injury. In Davidoff RA (ed): “Handbook of The Spinal Cord” Vols. 4 and 5, Marcel Dekker Publishers. Chap. 2, pp 19–61.

    Google Scholar 

  • Means ED, Anderson DK, Waters TR and Kalaf L (1981): Effect of methylprednisolone in compression trauma to the feline spinal cord. J Neurosurg 55: 200–208.

    Article  PubMed  CAS  Google Scholar 

  • Moorman SJ, Whalen LR and Nornes HO (1990): A neurotransmitter specific functional recovery mediated by fetal implants in the lesioned spinal cord of the rat. Brain Res 508: 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Murray M and Goldberger ME (1986): Replacement of synaptic terminals in lamina II and Clarke’s nucleus after unilateral lumbosacral dorsal rhizotomy in adult cats. J. Neurosci 6: 3205–3217.

    PubMed  CAS  Google Scholar 

  • Nornes H, Björklund A and Stenevi U (1983): Reinnervation of the denervated adult spinal cord of rats by intraspinal transplants of embryonic brain stem neurons. Cell Tiss Res 230: 15–35.

    CAS  Google Scholar 

  • Nornes H, Björklund A and Stenevi U (1984): Transplantation strategies in spinal cord regeneration, In Sladek Jr. JR, Gash DM (eds): “Neural Transplants-Development and Function.” Plenum Press: New York.

    Google Scholar 

  • Nothias F and Pechanski M (1990): Homotypic fetal transplants into an experimental model of spinal cord neurodegeneration. J Comp Neurol 301: 520–534..

    Article  PubMed  CAS  Google Scholar 

  • Nygren LG, Olson L and Seiger A (1977): Monoaminergic reinnervation of the transected spinal cord by homologous fetal brain grafts. Brain Res 129: 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Patel U and Bernstein JJ (1983): Growth, differentiation, and viability of fetal rat cortical and spinal cord implants into adult rat spinal cord. J Neurosci Res 9: 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Pixley SK, Anderson DK and Reier PJ (1994): Transplantation of embryonic cat nasal tissue into adult cat spinal cord. Manuscript in preparation.

    Google Scholar 

  • Privat A, Mansour H and Geffard M (1988): Transplantation of fetal serotonin neurons into the transected spinal cord of adult rats: Morphological development and functional influence. In Gash DM and Sladek JR (eds): “Transplantation into the Mammalian CNS.” Prog Brain Res, Vol 78: 155–167.

    Google Scholar 

  • Privat A, Mansour H, Pavy A, Geffard M and Sandillon F (1986): Transplantation of dissociated foetal serotonin neurons into the transected spinal cord of adult rats. Neurosci Lett 66: 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Privat A, Mansour H, Rajaofetra N and Geffard M (1989): Intraspinal transplants of serotonergic neurons in the adult rat. Brain Res Bull 22: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Reier PJ (1985): Neural tissue grafts and repair of the injured spinal cord. Neuropath Appl Neurobiol 11: 81–104.

    Article  CAS  Google Scholar 

  • Reier PJ, Anderson DK and Stokes BT (1992a): Neural tissue transplantation and CNS trauma: Anatomical and functional repair of the injured spinal cord. In Jane JA, Anderson DK, Torner JC and Young W (eds): “Central Nervous System Status Report” J. Neurotrauma 9(Suppl 1): S223–S248.

    Google Scholar 

  • Reier PJ, Bregman BS and Wujek JR (1986): Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. J Comp Neurol 247: 275–296.

    Article  PubMed  CAS  Google Scholar 

  • Reier PJ, Stensaas LJ and Guth L (1983): The astrocytic scar as an impediment to regeneration in the central nervous system. In Kao CC Bunge RP and Reier PJ (eds): “Spinal Cord Reconstruction.” Raven Press, New York pp 163–196.

    Google Scholar 

  • Reier PJ, Stokes BT, Thompson FJ and Anderson DK (1992b): Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Exp Neurol 115:,177–188.

    Article  CAS  Google Scholar 

  • Rosenbluth J, Hasegawa M, Shirasaki N, Rosen CL and Liu Z (1990): Myelin formation following transplantation of normal fetal glia into myelin-deficient rat spinal cord. J Neurocytol 19(5): 718–730.

    Article  PubMed  CAS  Google Scholar 

  • Schnell L, Schneider R, Kolbeck R, Barde Y-A and Schwab ME (1994): Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367: 170–173.

    Article  PubMed  CAS  Google Scholar 

  • Shik ML and Orlovsky GN (1976): Neurophysiology of locomotor automatism. Physiol Rev 58: 465–501.

    Google Scholar 

  • Sieradzan K and Vrbova G (1989): Replacement of missing motoneurons by embryonic grafts in the rat spinal cord. Neurosci. 31: 115–130.

    Article  CAS  Google Scholar 

  • Sternberger LA (1976): “Immunocytochemistry” 2nd Ed, Wiley, New York.

    Google Scholar 

  • Stokes BT and Reier PJ (1991): Oxygen transport in intraspinal fetal grafts: graft-host relations. Exp Neurol 111: 312–323.

    Article  PubMed  CAS  Google Scholar 

  • Stokes BT and Reier PJ (1992): Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord. Exp Neurol 116: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Tessler A, Himes BT, Houle J and Reier PJ (1988): Regeneration of adult dorsal root axons into transplants of embryonic spinal cord. J Comp Neurol 270: 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG (1992): Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery? In Jane JA, Anderson DK, Torner JC, Young W (eds): “Central Nervous System Trauma Status Report”. J Neurotrauma 9(Supp 1): S105–S117.

    Google Scholar 

  • Wetzel MC and Stuart DG (1976): Ensemble characteristics of cat locomotion and its neural control. Prog Neurobiol 7: 1–98.

    Article  PubMed  CAS  Google Scholar 

  • Wirth ED, Theele DP, Mareci TH, Anderson DK, Brown SA and Reier PJ (1992): In vivo magnetic resonance imaging of fetal cat neural tissue transplants in the adult cat spinal cord. J Neurosurg 76: 261–274.

    Article  PubMed  Google Scholar 

  • Yakovleff A, Roby-Brami A, Guezard B, Mansour A, Brussel B and Privat A (1989): Locomotion in rats transplanted with noradrenergic neurons. Brain Res Bull 22: 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Young W (1989): Recovery mechanisms in spinal cord injury: implications for regenerative therapy. In: FJ Seil (ed): ‘Neural Regeneration and Transplantation’. Alan R. Liss, Inc., New York, pp 157–169.

    Google Scholar 

  • Young W and Flamm ES (1982): Effects of high dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg 57: 667–673.

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Goldberger ME and Murray M (1993): Proliferation of SP- and 5HT-containing terminals in lamina II of rat spinal cord following dorsal rhizotomy: quantitative EM-immunocytochemical studies. Exp Neurol 123: 51–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, D.K., Howland, D.R., Reier, P.J. (1995). Characteristics of Intraspinal Grafts and Locomotor Function after Spinal Cord Injury. In: Juurlink, B.H.J., Krone, P.H., Kulyk, W.M., Verge, V.M.K., Doucette, J.R. (eds) Neural Cell Specification. Altschul Symposia Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1929-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1929-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5790-2

  • Online ISBN: 978-1-4615-1929-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics