Skip to main content

From Precursor Cell Biology to Tissue Repair in the O-2A Lineage

  • Chapter
Neural Cell Specification

Part of the book series: Altschul Symposia Series ((ALSS,volume 3))

  • 30 Accesses

Abstract

One of the preoccupations of our laboratory in recent years has been to achieve a detailed understanding of the mechanisms that control the proliferation and differentiation of glial cells and their precursors in the developing and adult central nervous systems. A long term goal of such studies is to determine the role of glial cells in aspects of disease and injury in the CNS, and to transplant well-characterised populations of precursor cells back into the CNS to assess their capacity for repair. In this review, we describe recent studies of glial precursor cells derived from the neonatal and adult CNS that have suggested possible strategies for the repair of demyelinated CNS lesions. In addition, we discuss how a novel approach for generating conditionally immortal cell lines has allowed us to develop an in vitro model that may be of use in the study of glial scarring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barres BA Hart IK Coles HSR Burne JF Voyvodic JT Richardson WD and Raff MC (1992): Cell death and control of cell survival in the oligodendrocyte lineage.Cell 70: 31–46.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore WF and Crang AJ (1988): Extensive oligodendrocyte remyelination following injection of cultured central nervous system cells into demyelinating lesions in adult central nervous system.Dev Neurosci 10: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore WF and Crang AJ (1989): The relationship between type-1 astrocytes, Schwann cells and oligodendrocytes following transplantation of glial cell cultures into demyelinating lesions in the adult rat spinal cord. J Neurocytol 18: 519–528.

    Article  PubMed  CAS  Google Scholar 

  • Bögler O and Noble M (1994): Measurement of time in oligodendrocyte-type-2 astrocyte progenitors is a cellular process distinct from differentiation or division. Dev Biol 162: 525–538.

    Article  PubMed  Google Scholar 

  • Bögler O Wren DR Barnett SC Land H and Noble MD (1990): Co-operation between two growth factors promotes extended self-renewal, and inhibits differentiation, of O-2A progenitor cells.Proc Natl Acad Sci USA 87: 6368–6372.

    Article  PubMed  Google Scholar 

  • Compston DAS Scolding NJ Wren DR and Noble M (1991): The pathogenesis of demyelinating disease: insights from cell biology.Trends Neurosci 14: 175–182.

    CAS  Google Scholar 

  • Crang AJ Franklin RJM Blakemore WF Noble M Barnett SC Groves A Trotter J and Schachner M (1992): The differentiation of glial cell progenitor populations following transplantation into non-repairing CNS glial lesions in adult animals. J Neuroimmunol 40: 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Cross M and Dexter TM (1991): Growth factors in development, transformation and tumorigenesis. Cell 64: 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Eccleston A and Silberberg DR (1985): Fibroblast growth factor is a mitogen for oligodendrocytes in vitro. Dev Brain Res 21: 315–318.

    Article  Google Scholar 

  • Fawcett JW Housden E Smith-Thomas and L Meyer RL (1989): The growth of axons in three-dimensional astrocyte cultures. Dev Biol 135: 449–458.

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant C Miller RH Burne JF and Raff MC (1988): Evidence that that migratory oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells are kept out of the rat retina by a barrier at the eye-end of the optic nerve. J Neurocytol 17: 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Gard AL and Pfeiffer SE (1990): Two proliferative stages of the oligodendrocyte lineage (A2B5+O4- and O4+Ga1C-) under different mitogenic control. Neuron 5: 615–625.

    Article  PubMed  CAS  Google Scholar 

  • Godfraind C Friedrich VL Holmes KV and Dubois-Dalcq M (1989): In vivo analysis of glial cell phenotypes during a viral demyelinating disease. J Cell Biol 109: 2405–2416.

    Article  PubMed  CAS  Google Scholar 

  • Groves AK Bögler O Jat PJ and Noble M (1991): The cellular measurement of time. Curr Opin Cell Biol 3: 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Groves AK Barnett SC Franklin RJM Crang AJ Mayer M Blakemore WF and Noble M (1993a): Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362: 453–455.

    Article  PubMed  CAS  Google Scholar 

  • Groves AK Entwistle A Jat PS and Noble M (1993b): The characterisation of astrocyte cell lines that display properties of glial scar tissue. Dev Biol 159: 87–104.

    Article  PubMed  CAS  Google Scholar 

  • Gumpel M Baumann N Raoul M and Jacque C (1983): Survival and differentiation of oligodendrocytes from neural tissue transplanted into newborn mouse brain. Neurosci Lett 37: 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Hunter SF and Bottenstein JE (1991): O-2A glial progenitors from mature brain respond to CNS neuronal cell line-derived growth factors. J Neurosci Res 28: 574–582.

    Article  PubMed  CAS  Google Scholar 

  • Israel A Kimura A Fournier A Fellous M and Kourilsky P (1986): Interferon response sequence potentiates activity of an enhancer in the promoter of a mouse H-2 gene. Nature 322: 743–746.

    Article  PubMed  CAS  Google Scholar 

  • Jat PS Noble MD Ataliotis P Tanaka Y Yannoutsos N Larssen L and Kioussis D (1991): Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci USA 88: 5096–5100.

    Article  PubMed  CAS  Google Scholar 

  • Kriss A Francis DA Cuendet F Halliday AM Taylor DS Wilson J Keast-Butler J Batchelor JR and McDonald WI (1988): Recovery after optic neuritis in childhood. J Neurol Neurosurg Psychiat 51: 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  • Laywell E and Steindler D (1991): Boundaries and wounds, glia and glycoconjugates: Cellular and molecular analyses of developmental partitions and adult brain lesions. Ann NY Acad Sci 633: 122–141.

    Article  PubMed  CAS  Google Scholar 

  • Laywell E Dörries U Bartsch U Faissner A. Schachner M and Steindler D (1992): Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc Natl. Acad Sci USA 89: 2634–2638.

    Article  CAS  Google Scholar 

  • Liesi P (1985): Laminin-immunoreactive glia distinguish regenerative adult CNS systems from non-regenerative ones. EMBO J 4: 2505–2511.

    PubMed  CAS  Google Scholar 

  • Liesi P Dahl D Vaheri A (1983): Laminin is produced by early rat astrocytes in primary culture. J Cell Biol 96: 920–924.

    Article  PubMed  CAS  Google Scholar 

  • Logan A (1990): The role of fibroblast growth factors in the central nervous system. Trends Endocrin Metab 1: 149–154.

    Article  CAS  Google Scholar 

  • Lotan M and Schwarz M (1992): Postinjury changes in platelet-derived growth factor-like activity in fish and rat optic nerves. J Neurochem 58: 1637–1642.

    Article  PubMed  CAS  Google Scholar 

  • Ludwin SK (1981): Pathology of demyelination and remyelination. In Waxman SG and Ritchie JM (eds): “Demyelinating Disease: Basic And Clinical Electrophysiology,” Raven Press: New York, pp 123–168.

    Google Scholar 

  • Mayer M Bögler O and Noble M (1993): The inhibition of oligodendrocytic differentiation of O-2A progenitors caused by basic fibroblast growth factor is overridden by astrocytes. Glia 8: 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Mayer M Bhakoo K and Noble M (1994): Ciliary neurotrophic factor and leukaemia inhibitory factor promote the generation, maturation and survival of oligodendrocytes in vitro. Development 120: 143–153.

    PubMed  CAS  Google Scholar 

  • McKeon RJ Schreiber RC Rudge JS and Silver J (1991): Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11: 3398–3411.

    PubMed  CAS  Google Scholar 

  • McKinnon RD Matsui T Dubois-Dalcq M and Aaronson SA (1990): FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5: 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Miller RH David S Patel ER and Raff MC (1985): A quantitative immunohistochemical study of macroglial cell development in the rat optic nerve: in vivo evidence for two distinct astrocyte lineages. Dev Biol 111: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M Lim R Hicklin DJ and Cotman CW (1988): Early release of glia maturation factor and acidic fibroblast growth factor after rat brain injury. Neurosci Lett 86: 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Noble M (1991): Points of controversy in the O-2A lineage: Clocks and type-2 astrocytes. Glia 4: 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Noble M Groves AK Ataliotis P and Jat PS (1992): From chance to choice in the generation of neural cell lines. Brain Pathol 2: 39–46.

    PubMed  CAS  Google Scholar 

  • Noble MD and Murray K (1984): Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. EMBO J 3: 2243–2247.

    PubMed  CAS  Google Scholar 

  • Noble MD Murray K Stroobant P Waterfield MD and Riddle P (1988): Platelet-derived growth factor promotes division and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333: 560–562.

    Article  PubMed  CAS  Google Scholar 

  • Price J Turner D and Cepko CL (1987): Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84: 156–160.

    Article  PubMed  CAS  Google Scholar 

  • Pringle N Collarini EJ Mosley MJ Heldin C-H Westermark B and Richardson WD (1989): PDGF A chain homodimers drive proliferation of bipotential (O-2A) glial progenitor cells in the developing rat optic nerve. EMBO J 8: 1049–1056.

    PubMed  CAS  Google Scholar 

  • Raff MC Abney ER and Fok-Seang J (1985): Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation. Cell 42: 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Raff MC Abney ER Cohen J Lindsay R and Noble M (1983a): Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface properties and growth characteristics. J Neurosci 3: 1289–1300.

    PubMed  CAS  Google Scholar 

  • Raff MC Miller RH and Noble M (1983b): A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature 303: 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Raff MC Miller RH and Noble M (1983c): Glial cell lineages in the rat optic nerve. Cold Spring Harbor Symp Quant Biol 48: 569–572.

    Article  PubMed  Google Scholar 

  • Raff MC Lillien LE Richardson WD Burne JF Noble MD (1988): Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333: 562–565.

    Article  PubMed  CAS  Google Scholar 

  • Renfranz PJ Cunningham MJ and McKay RDG (1991): Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing brain. Cell 66: 713–729.

    Article  PubMed  CAS  Google Scholar 

  • Richardson WD Pringle N Mosley M Westermark B and Dubois-Dalcq M (1988): A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53: 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Saneto RP and de Vellis J (1985): Characterisation of cultured rat oligodendrocytes proliferating in a serum-free chemically defined medium. Proc Natl Acad Sci USA 82: 3509–3513.

    Article  PubMed  CAS  Google Scholar 

  • Scolding NJ Morgan BP Houston A Campbell AK Linington C and Compston DAS (1989): Normal rat serum cytotoxicity against syngeneic oligodendrocytes. J Neurol Sci 89: 289–300.

    Article  CAS  Google Scholar 

  • Skoff RP Price DL Stocks A (1976a): Electron Microscopic autoradiographic studies of gliogenesis in rat optic nerve. 1. Cell proliferation. J Comp Anat 169: 291–311.

    CAS  Google Scholar 

  • Skoff RP Price DL and Stocks A (1976b): Electron Microscopic autoradiographic studies of gliogenesis in rat optic nerve. 2. Time of origin. J Comp Anat 169: 313–323.

    CAS  Google Scholar 

  • Small RK Riddle P and Noble MD (1987): Evidence for migration of oligodendrocyte-type2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328: 155157.

    Article  PubMed  CAS  Google Scholar 

  • Temple S and Raff MC (1986): Clonal analysis of oligodendrocyte development in culture: Evidence for a developmental clock that counts cell divisions. Cell 44: 773–779.

    Article  PubMed  CAS  Google Scholar 

  • Wallach D Fellous M and Revel M (1982): Preferential effect of g-interferon on the synthesis of HLA antigens and their mRNAs in human cells. Nature 299: 833–836.

    Article  PubMed  CAS  Google Scholar 

  • Weiss EH Mellor A Golden L Fahrner K Simpson E Hurst J and Flavell RA (1983): The structure of the mutant H-2 gene suggests that the generation of polymorphism in H-2 genes may occur by gene conversion-like events. Nature 301: 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Wolswijk G and Noble M (1989): Identification of an adult-specific glial progenitor cell. Development 105: 387–400.

    PubMed  CAS  Google Scholar 

  • Wolswijk G and Noble M (1992): Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitor cells to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. J Cell Biol 118: 889–900.

    Article  PubMed  CAS  Google Scholar 

  • Wolswijk G Riddle PN and Noble M (1990): Co-existence of perinatal and adult forms of a glial progenitor cell during development of the rat optic nerve. Development 109: 691–698.

    PubMed  CAS  Google Scholar 

  • Wolswijk G Riddle PN and Noble M (1991): Platelet-derived growth factor is mitogenic for O-2Aadult progenitor cells. Glia 4: 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Wren DR and Noble M (1989): Oligodendrocytes and oligodendrocyte/type-2 astrocyte progenitor cells of adult rats are specifically susceptible to the lytic effects of complement in absence of antibody. Proc Natl Acad Sci USA 86: 9025–9029.

    Article  PubMed  CAS  Google Scholar 

  • Wren DR Wolswijk G and Noble M (1992): In vitro analysis of the origin and maintenance of O-2Aadult progenitor cells. J Cell Biol 116: 167–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Groves, A.K., Noble, M. (1995). From Precursor Cell Biology to Tissue Repair in the O-2A Lineage. In: Juurlink, B.H.J., Krone, P.H., Kulyk, W.M., Verge, V.M.K., Doucette, J.R. (eds) Neural Cell Specification. Altschul Symposia Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1929-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1929-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5790-2

  • Online ISBN: 978-1-4615-1929-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics