Rearrangement of the ALL1 Gene in Acute Myeloid Leukemia without Chromosomal Translocations

  • Steven A. Schichman
  • Carlo M. Croce
Part of the Pezcoller Foundation Symposia book series (PFSO, volume 6)

Abstract

When the chromosomes of human leukemia cells are viewed through the microscope, aberrations are frequently seen in chromosome structure and number. These abnormalities comprise the gain, loss, or rearrangement of whole chromosomes or chromosome segments. More than 20 years ago, researchers discovered that certain types of chromosomal abnormalities were consistently associated with certain types of leukemia. These observations led to the hypothesis, now shown to be correct, that some types of chromosomal defects are causally related to the formation of leukemia.1

Keywords

Zinc Lymphoma Leukemia Recombination Adenoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nowell, P. C., 1994. Cytogenetic approaches to human cancer genes. FASEB Jour. 8: 408–413.Google Scholar
  2. 2.
    Croce, C. M., 1987. Role of chromosome translocations in human neoplasia. Cell (Cambridge, Mass.) 49: 155–156.CrossRefGoogle Scholar
  3. 3.
    Shitvelman, E., Lifshitz, B., Gale, R. P., and Canaani, E., 1985. Fused transcript of abl and bcr genes in chronic myelogenous leukemia. Nature (London) 315: 550–552.CrossRefGoogle Scholar
  4. 4.
    Burrow, J., Goddard, A. D., Sheer, D., and Solomon, E., 1990. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249: 1577–1580.CrossRefGoogle Scholar
  5. 5.
    Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., and Ohki, M., 1991. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. U.S.A. 88: 10431–10434.PubMedCrossRefGoogle Scholar
  6. 6.
    Nourse, J., Mellentin, J. D., Galili, N., Wilkinson, J., Stanbridge, E., Smith, S. D., and Cleary, M. L., 1990. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell (Cambridge, Mass.) 60: 535–545.CrossRefGoogle Scholar
  7. 7.
    Rowley, J. D., 1993. Rearrangements involving chromosome band 11q23 in acute leukemia. Sem. Cancer Biol. 4: 377–385.Google Scholar
  8. 8.
    Thirman, M. J., Gill, H. J., Burnett, R. C., Mbangkollo, D., McCabe, N. R., Kobayashi, H., Ziemin-Van Der Poel, S., Kaneko, Y., Morgan, R., Sandberg, A. A., Chaganti, R. S. K., Larson, R. A., Le Beau, M. M., Diaz, M. O., and Rowley, J. D., 1993. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N. Eng. J. Med. 329: 909–914.CrossRefGoogle Scholar
  9. 9.
    Cimino, G., Moir, D. T., Canaani, O., Williams, K., Crist, W. M., Katzav, S., Cannizzaro, L., Lange, B., Nowell, P. C., Croce, C. M., and Canaani, E., 1991. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res. 51:6712–6714.PubMedGoogle Scholar
  10. 10.
    Zieman-van der Poel, S., McCabe, N. R., Gill, H. J., Espinosa, R., III, Patel, Y., Harden, A., Rubinelli, P., Smith, S. D., Le Beau, M. M., Rowley, J. D., and Diaz, M. O., 1991. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl. Acad. Sci. U.S.A. 88: 10735–10739.CrossRefGoogle Scholar
  11. 11.
    Gu, Y., Nakamura, T., Alder, H., Prasad, R., Canaani, O., Cimino, G., Croce, C.M., and Canaani, E., 1992. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell (Cambridge, Mass.) 71: 701–708.CrossRefGoogle Scholar
  12. 12.
    Tkachuk, D. C., Kohler, S., and Cleary, M. L., 1992. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell (Cambridge, Mass.) 71: 691–700.CrossRefGoogle Scholar
  13. 13.
    Caligiuri, M. A., Schichman, S. A., Strout, M. P., Mrozek, K., Baer, M. R., Frankel, S. R., Bareos, M., Herzig, G. P., Croce, C. M., and Bloomfield, C. D., 1994. Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. Cancer Res. 54: 370–373.PubMedGoogle Scholar
  14. 14.
    Schichman, S. A., Caligiuri, M. A., Gu, Y., Strout, M. P., Canaani, E., Bloomfield, C. D., and Croce, C. M., 1994. ALL-1 partial duplication in acute leukemia. Proc. Natl. Acad. Sci. U.S.A. 91: 6236–6239.PubMedCrossRefGoogle Scholar
  15. 15.
    Schichman, S. A., Caligiuri, M. A., Strout, M. P., Carter, S. L., Gu, Y., Canaani, E., Bloomfield, C. D., and Croce, C. M., 1994. ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Res. 54: 4277–4280.PubMedGoogle Scholar
  16. 16.
    Chen, C.-S., Sorensen, P. H. B., Domer, P. H., Reaman, G. H., Korsmeyer, S. J., Heerema, N, A., Hammond, G. D., and Kersey, J. H., 1993. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood 81: 2386–2393.PubMedGoogle Scholar
  17. 17.
    Cimino, G., Lo Coco, F., Biondi, A., Elia, L., Luciano, A., Croce, C. M., Masera, G., Mandelli, F., and Canaani, E., 1993. ALL-1 gene at chromosome 11q23 is consistently altered in acute leukemia of early infancy. Blood 82: 544–546.PubMedGoogle Scholar
  18. 18.
    Rubnitz, J. E., Link, M. P., Shuster, J. J., Carroll, A. J., Hakami, N., Frankel, L. S., Pullen, D. J., and Cleary, M. L., 1994. Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a pediatric oncology group study. Blood 84: 570–573.PubMedGoogle Scholar
  19. 19.
    Hunger, S. P., Tkachuk, D. C., Amylon, M. D., Link, M. P., Carroll, A. J., Welborn, J. L., Willman, C. L., and Cleary, M, L., 1993. HRX involvement in de novo and secondary leukemias with diverse chromosome 11q23 abnormalities. Blood 81: 3197–3203.PubMedGoogle Scholar
  20. 20.
    Gill Super, H. J., McCabe, N. R., Thirman, M. J., Larson, R. A., Le Beau, M. M., Pedersen-Bjergaard, J., Philip, P., Diaz, M. O., and Rowley, J. D., 1993. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82: 3705–3711.PubMedGoogle Scholar
  21. 21.
    Gu, Y., Alder, H., Nakamura, T., Schichman, S. A., Prasad, R., Canaani, O., Saito, H., Croce, C. M., and Canaani, E., 1994. Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia. Cancer Res. 54: 2327–2330.PubMedGoogle Scholar
  22. 22.
    Ma, Q., Alder, H., Nelson, K. K., Chatterjee, D., Gu, Y., Nakamura, T., Canaani, E., Croce, C. M., Siracusa, L. D., and Buchberg, A. M., 1993. Analysis of the murine All-1 gene reveals conserved domains with human ALL-1 and identifies a motif shared with DNA methyltransferases. Proc. Natl. Acad. Sci. U.S.A. 90: 6350–6354.PubMedCrossRefGoogle Scholar
  23. 23.
    Zeleznik-Le, N. J., Harden, A. M., and Rowley, J. D., 1994. 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc. Natl. Acad. Sci. U.S.A. 91: 10610–10614.PubMedCrossRefGoogle Scholar
  24. 24.
    Bernard, O. A., Mauchauffe, M., Mecucci, C., Van Den Berghe, H., and Berger, R., 1994. A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene 9: 1039–1045.PubMedGoogle Scholar
  25. 25.
    Nakamura, T., Alder, H., Gu, Y., Prasad, R., Canaani, O., Kamada, N., Gale, R. P., Lange, B., Crist, W. M., Nowell, P. C., Croce, C. M., and Canaani, E., 1993. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc. Natl. Acad. Sci. U.S.A. 90: 4631–4635.PubMedCrossRefGoogle Scholar
  26. 26.
    Prasad, R., Gu, Y., Alder, H., Nakamura, T., Canaani, O., Saito, H., Huebner, K., Gale, R. P., Nowell, P. C., Kuriyama, K., Miyazaki, Y., Croce, C. M., and Canaani, E., 1993. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) translocation. Cancer Res. 53: 5624–5628.PubMedGoogle Scholar
  27. 27.
    Prasad, R., Leshkowitz, D., Gu, Y., Alder, H., Nakamura, T., Saito, H., Huebner, K., Berger, R., Croce, C. M., and Canaani, E., 1994. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc. Natl. Acad. Sci. U.S.A. 91: 8107–8111.PubMedCrossRefGoogle Scholar
  28. 28.
    Thirman, M. J., Levitan, D. A., Kobayashi, H., Simon, M. C, and Rowley, J. D., 1994. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc. Natl. Acad. Sci. U.S.A. 91: 12110–12114.PubMedCrossRefGoogle Scholar
  29. 29.
    Rowley, J. D., 1992. The der(11) chromosome contains the critical breakpoint junction in the 4;11, 9;11, and 11;19 translocations in acute leukemia. Genes Chrom. Cancer 5: 264–266.PubMedCrossRefGoogle Scholar
  30. 30.
    Kobayashi, H., Espinosa III, R., Thirman, M. J., Gill, H. J., Fernald, A. A., Diaz, M. O., Le Beau, M. M., and Rowley, J. D., 1993. Heterogeneity of breakpoints of 11q23 rearrangements in hematologic malignancies identified with fluorescence in situ hybridization. Blood 82: 547–551.PubMedGoogle Scholar
  31. 31.
    Downing, J. R., Head, D. R., Raimondi, S. C., Carroll, A. J., Curcio-Brint, A. M., Motroni, T. A., Hulshof, M. G., Pullen, D. J., and Domer, P. H., 1994. The der(11)-encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11)(q21;q23)-containing acute lymphoblastic leukemia. Blood 83: 330–335.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Steven A. Schichman
    • 1
  • Carlo M. Croce
    • 1
  1. 1.Jefferson Cancer Institute Jefferson Cancer Center and Department of Microbiology and ImmunologyJefferson Medical College of Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations