Skip to main content

Coronary Artery Restenosis Following Balloon Angioplasty

Insights into the Mechanisms of Neointimal Hyperplasia and Molecular Strategies for Prevention

  • Chapter
Cardiac Surgery

Abstract

Since its advent in 1978, the nonsurgical technique of coronary balloon angioplasty has enjoyed widespread popularity as a means of revascularizing ischemic myocardium. In excess of 250,000 procedures are done each year in the USA alone. While the technique has a high primary success rate, 30% to 50% of patients have evidence of recurrent myocardial ischemia within six months of angioplasty.1,2 This is due to the development of a restenotic lesion. Coronary atherectomy3 and postmortem4 histologic studies have demonstrated that the restenotic lesion is largely due to neointimal proliferation of smooth muscle cells. Thus, the process of restenosis, the excessive proliferation of smooth muscle cells, represents an enormous problem in clinical cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holmes DR, Vliestra RE, Smith HC, et al. Restenosis after PTCE: a report of the PTCA registry of the NHLBI. Am J Cardiol 1984;53:77C–81C.

    Article  PubMed  Google Scholar 

  2. Serruys PW, Luijten HE, Beatt KJ, et al. Incidence of restenosis after successful coronary angioplasty: a time related phenomenon. A quantitative sutdy in 342 consecutive patints at 1, 2, and 3 months.

    Article  PubMed  CAS  Google Scholar 

  3. Waller BF Johnson DE, Schmitt SJ, et al. Histologic analysis of directional coronary atherectomy. A review of findings and clinical relevance. Am J Cardiol 199372-80E–7E

    Article  PubMed  CAS  Google Scholar 

  4. Waller BF, Pinkerton CA, Orr CM, et al. Restenosis 1 to 24 months after successful balloon angioplasty anecropsystudyof20patients.JAmCollCardiol 1991:17:58B–70B

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz L, Bourassa MG, Lesperance J, et al. Aspirin and dipyridamole in the prevention of restenosis after percutaneous transluminal coronary angioplasty. N Engl J Med 1988 318,1714– 9

    Article  PubMed  CAS  Google Scholar 

  6. Ellis SG, Roubin GS, Wilentz J et al. Effects of 18 to 24 hour heparin administration for prevention of restenosis after uncomplicated coronary angioplasty. Am Heart J 1989-117777–82

    Article  PubMed  CAS  Google Scholar 

  7. Faxon DP, Spiro TE, Minor S, et al. Low molecular weight heparin in prevention of restenosis after angioplasty. Results of the enoxparin restenosis (ERA) trial. Circulation 1994-90908–14

    Article  PubMed  CAS  Google Scholar 

  8. Stone GW, Rutherford BD, McConahay DR, et al. A randomized trial of corticosteroids for the prevention of restenosis in 102 patients undergoing coronary angioplasty. Cathet Cardiovas Diagn 1989-18227–31

    Article  CAS  Google Scholar 

  9. O ’Keefe JH, Giorgi LV, Hartzler GO, et al. Effects of diltiazem on complications and restenosis after coronary angioplasty. Am Heart J 1991;67:373–6.

    Google Scholar 

  10. Whitworth HB, Roubin GS, Hollman J, et al. Effects of nifedipine on recurrent stenosis after percutaneous transluminal balloon angioplasty. J Am Coll Cardiol 1986;8:1271–6.

    Article  PubMed  CAS  Google Scholar 

  11. Hermans WR, Rensing BJ, Foley et al. Patient, lesion and procedural variables as risk factors for luminal renarrowing after successful coronary angioplasty; a quantitative analysis in 653 patients with 777 lesions. The multicenter European research trial with cilazapril after angioplasty to prevent transluminal coronary obstruction and restenosis. J Cardiovas Pharm 1993;22:S45–57.

    Article  Google Scholar 

  12. Kaul U, Chandra S, Bahl YK, et al. Enalapril for prevention of restenosis after coronary angioplasty. Ind Heart J 1993;45:469–73.

    CAS  Google Scholar 

  13. Onaka H, Hirota Y, Kita Y, et al. The effect of pravastatin on prevention of restenosis after successful percutaneous transluminal balloon angioplasty. Jpn Circ J 1994;52:100–6.

    Article  Google Scholar 

  14. Gershlick AH, Spriggins D, Davies SW, et al. Failure of epoprostenol (prostacyclin, PGI2) to inhibit platelet aggregation and prevent restenosis after coronary angioplasty, results of a randomized placebo controlled trial. Br Heart J 1993;45:469–73.

    Article  Google Scholar 

  15. Serruys PW, Rutsch W, Heyndrickx GR, et al. Prevention of restenosis after percutaneous transluminal coronary angioplasty with thromboxane A2 receptor blockade. A randomized, double-blind, placebo controlled trial. Circulation 1994;84:1568–80.

    Article  Google Scholar 

  16. Serruys PW, Klein W, Tijssen JP, et al. Evaluation of ketanserin in the prevention of restenosis after percutaneous transluminal coronary angioplasty. A multicenter, randomized, double-blind placebo con-trolled trial. Circulation 1993;88:1588–601.

    Article  PubMed  CAS  Google Scholar 

  17. Frazen D, Schannwell M, OetteK, et al. A prospective, randomized and double-blind trial on the effect of fish oil on the incidence of restenosis following percutaneous transluminal coronary angioplasty. Cathet Cardiovas Diag 1993;28:301–10.

    Article  Google Scholar 

  18. Holmes DR, Topol ED, Adelman AG, et al. Randomized trials of directional coronary atherectomy, implications for clinical practice and future investigations. J Am Coll Cardiol 1994;24:431–9.

    Article  PubMed  Google Scholar 

  19. Koller RT, Freed M, Grines CL, et al. Success, complications and restenosis following rotational and transluminal atherectomy of ostial stenosis. Cathet Cardiovas Diagn 1994;31:255–60.

    Article  CAS  Google Scholar 

  20. Buchwald AB, Werner GS, Unterberg C, et al. Restenosis after excimer laser angioplasty of coronary stenosis and chronic total occlusions. Am Heart J 1992;123:878–85.

    Article  PubMed  CAS  Google Scholar 

  21. Foley JB, Penn IM, Brown RI, et al. Safety, success and restenosis after elective coronary implantation of the Palmaz-Schatz stent in 100 patients at a single center. Am Heart J 1993;125:686–94.

    Article  PubMed  CAS  Google Scholar 

  22. McBride W, Lange RA, Hillis LD. Restenosis after successful coronary angioplasty. Pathophysiology and prevention. N Engl J Med 1988:318,1734–7.

    Article  PubMed  CAS  Google Scholar 

  23. Lam JYT, Chesebro JH, Steele PM, et al. Deep arterial injury during experimental angioplasty: relation-ship to a positive 111 Indium-labeled platelet scintigram, quantitative platelet deposition, and mural thrombus. J Am Coll Cardiol 1986;8:1380–6.

    Article  PubMed  CAS  Google Scholar 

  24. Harker LA. Role of platelets and thrombosis in mechanisms of acute occlusion and restenosis after angioplasty. Am J Cardiol 1987;60:20B–8B

    Article  PubMed  CAS  Google Scholar 

  25. Ip JH, Fuster V, Israel D, et al. The role of platelets, thrombin and hyperplasia in restenosis after coronary angioplasty. J Am Coll Cardiol 1991;16:77B–88B.

    Article  Google Scholar 

  26. Bowen-pope DF, Ross R, Seifert RA. Locally acting growth factors for vascular smooth muscle cells: endogenous synthesis and release from platelets. Circulation 1985:72;735–40.

    Article  PubMed  CAS  Google Scholar 

  27. Walker LN, Bowen-Pope DF, Ross R, Reidy MA. Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc Natl Acad Sci USA 1986;83:7311–5.

    Article  PubMed  CAS  Google Scholar 

  28. Libby P, Warner SJC, Salomen RN, Birinyi LK. Production of platelet-derived growth factor-like mitogen by smooth muscle cells from human atheroma. N Engl J Med 198;318:1493–8.

    Google Scholar 

  29. Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986;46:155–69.

    Article  PubMed  CAS  Google Scholar 

  30. Ferns GA, Raines EW, Sprugel KA et al. Inhibition of neointimal smooth muscle cell accumulation after angioplasty by an antibody to PDGF. Science 1991;253:1129–32.

    Article  PubMed  CAS  Google Scholar 

  31. McNamara CA, Sarembock, IJ, Gimple LW Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by proteolytically activated receptor. J Clin Invest 1993;91:94–8.

    Article  PubMed  CAS  Google Scholar 

  32. Weiss RH, Maduri M. The mitogenic effects of thrombin in vascular smooth muscle cells is largely due to basic fibroblast growth factor. J Bio Chem 1993;268:5724–7.

    CAS  Google Scholar 

  33. Stouffer GA, Sarenbock lJ, McNamara CA. Thrombin-induced mitogenesis of vascular smooth muscle cells is partially mediated by autocrine production of PDGF-AA. Am J Physiol 1993;265:C806–11.

    PubMed  CAS  Google Scholar 

  34. Walters TK, Gorog DA, Wood DF. Thrombin generation following arterial injury is a critical initiating event in the pathogenesis of the proliferative stages of the atherosclerotic process. J Vas Res 1994;31:173– 7.

    Article  CAS  Google Scholar 

  35. Winkles JA, Friesel R, Burgess WH, et al. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor 1 (endothelial cell growth factor). Proc Natl Acad Sci USA 1987;84:7124–8.

    Article  PubMed  CAS  Google Scholar 

  36. Casscells W, Lappi DA, Olwin BB, et al. Elimination of smooth muscle cells in experimental restenosis: targeting of fibroblast growth factor receptors. Proc Nat Acad Sci USA 1992;7159–63.

    Google Scholar 

  37. Biro S, Siegall CB, Fu YM, et al. In vitro effects of a recombinant toxin targeted to the fibroblast growth factor on rat vascular smooth muscle and endothelial cells. Circ Res 1992;71:640–5.

    Article  PubMed  CAS  Google Scholar 

  38. Linder V, Reidy MA. Proliferation of smooth muscle cell after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci USA 1991;88:3739–43.

    Article  Google Scholar 

  39. Hirata Y, Takagi Y, Eukuda Y, et al. Endothelin is a potent mitogen for rat vascular smooth muscle cell. Atherosclerosis 1989; 78:225–8.

    Article  PubMed  CAS  Google Scholar 

  40. Douglas SA, Ohlstein EH. Endothelin-1 promotes neointimal formation after balloon injury in the rat. J CardiovasRes 1993;22:S371–3.

    Article  CAS  Google Scholar 

  41. Ferns GA, Motani AS, Angard EE. The insulin-like growth factors: their putative role in atherogenesis. Artery 1991;18; 197–225.

    PubMed  CAS  Google Scholar 

  42. Cercek B, Fishbein MC, Forrester JS, et al. Induction of insulin-like growth factor I messenger RNA in rat aorta after balloon denudation. Circ Res 1990;66:1755–60.

    Article  PubMed  CAS  Google Scholar 

  43. Bjorkerud S. Effects of transforming growth factor on human arterial smooth muscle cells in vitro. Arterioscler Thromb 1991; 11:892–902.

    Article  PubMed  CAS  Google Scholar 

  44. Nikol S, Isner JM, Pickering et al. Expression of transforming growth factor beta-1 is increased in human vascular restenotic lesions. J Clin Invest 1992;90:1582–92.

    Article  PubMed  CAS  Google Scholar 

  45. Biennis J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 1993;90:5889–92.

    Article  Google Scholar 

  46. Pines J. Cyclins and cyclin-dependent kinases: take your partner. Trend Biochem Sci 1993;18:195–8.

    Article  PubMed  CAS  Google Scholar 

  47. Graves LM, Bornfeldt KE, Raines EW, et al. Protein kinase A antagonizes platelet-derived growth factor induced signaling by the mitogen activated kinase in human arterial SMC. Proc Natl Acad Sci USA 1993;90:10300–4.

    Article  PubMed  CAS  Google Scholar 

  48. Davies RJ. The mitogen activated protein kinase signal transduction pathway. J Bio Chem. 1993;268:14553–6.

    Google Scholar 

  49. van den Heuvel S, Harlow E. Distinct role for cyclin-dependent kinase in cell cycle control. Science 1993;262:2050–4.

    Article  PubMed  Google Scholar 

  50. Helene C, Toulme J. Specific regulation of gene expression by sense, antisense and antigene nucleic acids. Biochim Biophys Acta 1990; 1049: 99–125.

    Article  PubMed  CAS  Google Scholar 

  51. Speir E, Epstein SE. Inhibition of smooth muscle cell proliferation by antisense oligodeoxynucleotides targeting the messenger RNA encoding proliferating nuclear cell antigen. Circulation 1992;86:1190–5.

    Article  Google Scholar 

  52. Moriishita R, Gibbons GH, Ellison KE, et al. Single intraluminal delivery of antisense to cdc-2 kinase and proliferating cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyper-plasia. Proc Natl Acad Sci USA 1993;90:8474–8.

    Article  Google Scholar 

  53. Simons M, Edelmann ER, DeKeyser JL, et al. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 1992;359:67–80.

    Article  PubMed  CAS  Google Scholar 

  54. Shi Y, Hutchinson HG, Hall DJ, et al. Downregulation of c-myc expression by antisense oligonucleotides inhibits proliferation of human smooth muscle cells. Circulation 1993;88:1190–5.

    Article  PubMed  CAS  Google Scholar 

  55. Biro S, Fu YM, Yu ZX, et al. Inhibitory effects of antisense oligodeoxynucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration. Proc Natl Acad Sci USA 1993;90:654–8.

    Article  PubMed  CAS  Google Scholar 

  56. Shi Y, Fard A, Galeo A, et al. Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary balloon injury. Circulation 1994;90:944–51.

    Article  PubMed  CAS  Google Scholar 

  57. Ohno T, Gordon D, San H, Pompili VJ, et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 1994;265:781–4.

    Article  PubMed  CAS  Google Scholar 

  58. Chang MW, Barr E, Seltzer J et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 1995;267:518–22.

    Article  PubMed  CAS  Google Scholar 

  59. Pastan IH, Johnson GS, Andersen WB. Role of cyclic nucleotides in growth control. Ann Rev Biochem 1975;44:491–522.

    Article  PubMed  CAS  Google Scholar 

  60. Owen NE. Effects of prostaglandin El on DNA synthesis in vascular smooth muscle cells. Am J Physio 1986;250:584–8.

    Google Scholar 

  61. Takahashi S, Oida K, Fujiwara R, et al. Effects of cilostazol, a cAMP phosphodiesterase inhibitor, on the proliferation of rat aortic smooth muscle cells in culture. J Cardiovas Pharm 1992;20:900–6.

    Article  CAS  Google Scholar 

  62. Majack RA, Cook SC, Bornstein P. Control of smooth muscle cell growth by components of the extracellular matrix: autocrine role for thrombospondin. Proc Natl Acad Sci USA 1986;83:9050–4.

    Article  PubMed  CAS  Google Scholar 

  63. Majack RA, Mildbrandt J, Dixit VM. Induction of the thrombospondin messenger RNA levels occurs as an immediate primary response to platelet-derived growth factor. J Bio Chem 1987; 262:8821–5.

    CAS  Google Scholar 

  64. Wu J, Dent P, Jelinek T, et al. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3 ‘5 ’-monophosphate. Science 1993;262:1065–9.

    Article  PubMed  CAS  Google Scholar 

  65. Cook SJ, McCormickF. Inhibition by cAMP of Ras-dependent activation of Raf. Science 1993;262:1069– 72.

    Article  PubMed  CAS  Google Scholar 

  66. Kato JY, Matsuka M, Polyak K, et al. Cyclic AMP-induced Gl phase arrest mediated by an inhibitor (p27 Kipl) of cyclin-dependent kinase 4 activator. Cell 1994;79:487–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sunnergren, K.P. (1995). Coronary Artery Restenosis Following Balloon Angioplasty. In: Cernaianu, A.C., DelRossi, A.J. (eds) Cardiac Surgery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1925-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1925-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5788-9

  • Online ISBN: 978-1-4615-1925-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics