Advertisement

Qualitative Methods in Problem Solving

The Evaluation of the Orders of Magnitude
  • Daniele Pescetti

Abstract

The purpose of this paper is to discuss the role of qualitative methods in problem solving during the first two years of university (Pescetti, 1986; Ghione, 993). In particular, original contributions are offered on the topic of evaluation of the orders of magnitude.

Keywords

Qualitative Method Relevant Parameter Dimensional Analysis Nonlinear Oscillator Correct Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AA. VV., 1993, Proceedings of the International Workshop on Research in Physics Education, Ed. CNRS, La Londe, France.Google Scholar
  2. Birkkoff, G., 1960, Hydrodynamics: A Study in Logic, fact and Similitude, Princeton Univ. Press, Princeton.Google Scholar
  3. Bond, W. N., 1929, Phil Mag., 7, 94, 719.Google Scholar
  4. Bouasse, H., 1914, Cours de Magnetism et d ’Electricitè, Delagrave, Paris.Google Scholar
  5. Curie, P., 1894, J. Phys., 393.Google Scholar
  6. Desloge, E. A., 1994, Am. J. Phys., 62, 216.CrossRefGoogle Scholar
  7. Einstein, A., 1911, Ann. Phys., 35, 687.Google Scholar
  8. Focken, C. M., 1953, Dimensional Methods and their Application, Arnold, London.Google Scholar
  9. Ghione, U. and Pescetti,D., 1993, Giornale di Fisica, XXXVI, 59.Google Scholar
  10. Gleick, J., 1987, Chaos, Viking Penguin.Google Scholar
  11. Guggenheim, E. A., 1942, Phil. Mag., 33, 222, 479.Google Scholar
  12. Hulin, M., 1980, Eur. J. Phys., 1, 55 .CrossRefGoogle Scholar
  13. Landau, L. and Lifchitz, E., 1966, Mècanique, MIR, Moscow.Google Scholar
  14. Maksymowicz, A., 1976, Am. J. Phys., 44, 295.CrossRefGoogle Scholar
  15. Menzel, D. H., 1953, Mathematical Physics, Prentice hall, New York.Google Scholar
  16. Migdal, A. B. and Krainov, V, 1969, Approximation Methods in Quantum Mechanics, Benjamin , New York.Google Scholar
  17. Pescetti, D, 1986, Giornale di Fisica, XXVII, 131Google Scholar
  18. Rayleigh (Lord), 1892, Phil. Mag., XXXIV, 59.Google Scholar
  19. Sedov, L. I., 1982, Similarity and Dimensional Methods in Mechanics, MIR, Moscow.Google Scholar
  20. Subramanian, P. M., Gnanapragasam, B. and Janhavi, G., 1985, Eur. J. Phys., 6, 238.CrossRefGoogle Scholar
  21. Supplee, J. M., 1985, Am. J. Phys., 53, 549.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Daniele Pescetti
    • 1
  1. 1.Physics InstituteUniversity of GenoaGenoaItaly

Personalised recommendations