Skip to main content

Representation of Temporal Patterns of Signal Amplitude in the Anuran Auditory System and Electrosensory System

  • Chapter
Neural Representation of Temporal Patterns

Abstract

The temporal structure of sensory signals plays an important role in the biology of many animals including man (Emlen, 1972; Gerhardt, 1982; Heiligenberg, 1991; Kay, 1982; Rose, 1986). This chapter focuses on how temporal variations in the amplitude of acoustic or electric signals are represented in auditory systems of frogs and toads (anurans) and in the electrosensory system of a weakly electric fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, M, Hose B., and Langner G., 1989, Modulation transfer functions in the auditory midbrain (MLD) of the guinea fowl (Numida meleagris), in: “Dynamics and Plasticity in Neuronal Systems ”, N. Eisner and W. Singer, eds, Thieme Verlag, Stuttgart.

    Google Scholar 

  • Bastian, J., 1981a, Electrolocation I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli, J. Comp. Physiol. A, 144:465.

    Article  Google Scholar 

  • Bastian, J., 1981b, Electrolocation II. The effects of moving objects and other electrical stimuli on the activities of two categories of posterior lateral line lobe cells in Apteronotus albifrons, J. Comp. Physiol. A, 144:481.

    Article  Google Scholar 

  • Bastian, J., 1986a, Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe, J. Neurosci., 6:553.

    PubMed  CAS  Google Scholar 

  • Bastian, J., 1986b, Gain control in the electrosensory system: A role for the descending projections to the electrosensory lateral line lobe, J. Comp. Physiol. A, 158:505.

    Article  PubMed  CAS  Google Scholar 

  • Bastian, J., and Yuthas, J., 1984, The jamming avoidance response of Eigenmannia: Properties of a diencephalic link between sensory processing and motor output, J. Comp. Physiol. A, 154: 895.

    Article  Google Scholar 

  • Bialek, W., Rieke, F., De Ruyter van Steveninck, R.R., and Warland, D., 1991, Reading a neural code, Science, 252:1854

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz, E.A., and Rose, G. J., 1994, Behavioural plasticity mediates aggression in choruses of the Pacific treefrog, Anim. Behav., 47:633.

    Article  Google Scholar 

  • Brenowitz, E.A., Rose, G.J., and Capranica, R.R., 1985, Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs, J. Comp. Physiol. A, 157:763.

    Article  PubMed  Google Scholar 

  • Bullock, T.H., 1982, Electroreception, Ann. Rev. Neurosci., 5:121.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T.H., Hamstra, R.H., and Scheich, H., 1972, The jamming avoidance response of high-frequency electric fish, J. Comp. Physiol. A, 77:1.

    Article  Google Scholar 

  • Emlen, S.T., 1972, An experimental analysis of the parameters of bird song eliciting species recognition, Behavior, 41:130.

    Article  Google Scholar 

  • Gerhardt, H.C., 1978, Temperature coupling in the vocal communication system of the gray treefrog, Hyla versicolor, Science, 199:992.

    CAS  Google Scholar 

  • Gerhardt, H.C., 1982, Sound pattern recognition in some North American treefrogs (Anura:Hylidae): Implications for mate choice, Am. Zool., 22:585.

    Google Scholar 

  • Gerhardt, H.C., 1988, Acoustic properties used in call recognition by frogs and toads. in: “The Evolution of the Anuran Auditory System ”, Fritzsch, B., Ryan M., Wilczynski, W., Hetherington, T., Walkowiak, W., eds, John Wiley and Sons, New York, NY.

    Google Scholar 

  • Gerhardt, H.C., and Dougherty, J.A., 1988, Acoustic communication in the gray treefrog, Hyla versicolor: Evolutionary and neurobiological implications, J. Comp. Physiol. A, 162:261.

    Article  Google Scholar 

  • Gooler, M, and Feng, A.S., 1992, Temporal coding in the frog auditory midbrain: Influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli, J. Neurophysioi., 67:1.

    CAS  Google Scholar 

  • Gray, E.G., 1959, Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron-microscopic study, J. Anat,. 93:420.

    CAS  Google Scholar 

  • Hall, J.C., and Feng, A.S.,1991, Temporal processing in the dorsal medullary nucleus of the northern leopard frog (Rana pipiens pipiens), J. Neurophysioi., 66:955.

    CAS  Google Scholar 

  • Heiligenberg, W., 1977, Principles of electrolocation and jamming avoidance in electric fish. A neuroethological approach. in: “Studies of Brain Function, Vol. 1, ” Braitenberg, V., ed, Springer, Berlin.

    Google Scholar 

  • Heiligenberg, W., 1989, Central processing of electrosensory information in gymnotiform fish, J. Exp. Biol, 146:255.

    PubMed  CAS  Google Scholar 

  • Heiligenberg, W., 1991, The neural basis of behavior: A neuroethological view, Ann. Rev. Neurosci., 14:247.

    Article  PubMed  CAS  Google Scholar 

  • Heiligenberg, W., 1991, “Neural Nets in Electric Fish ”, MIT press, Cambridge, MA.

    Google Scholar 

  • Heiligenberg, W., Baker, C., and Matsubara, J., 1978, The jamming avoidance response in Eigenmannia revisited: The structure of a neuronal democracy, J. Comp. Physiol. A, 127: 267.

    Article  Google Scholar 

  • Kay, R.H., 1982, Hearing modulations in sound, Physiol. Rev., 62:894.

    PubMed  CAS  Google Scholar 

  • Keller, C., 1988, Stimulus discrimination in the diencephalon of Eigenmannia: The emergence and sharpening of a sensory filter, J. Comp. Physiol. A, 162:747.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C., and Zador, A., 1993, The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization, J. Neurosci., 13:413.

    PubMed  CAS  Google Scholar 

  • Koch, C., Zador, A., and Brown, T.H., 1992, Dendritic spines: Convergence of theory and experiment, Science, 256:973.

    Article  PubMed  CAS  Google Scholar 

  • Langner, G., 1992, Periodicity coding in the auditory system, Hearing Res., 60: 115.

    Article  CAS  Google Scholar 

  • Langner, G., and Schreiner, C.E., 1988, Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms, J. Neurophysiol., 60:1799.

    PubMed  CAS  Google Scholar 

  • Matsubara, J., and Heiligenberg, W., 1978, How well do electric fish electrolocate under jamming?J. Comp. Physiol. A, 149:339.

    Article  Google Scholar 

  • Muller, W., and Connor, J.A., 1991, Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses, Nature, 354:73.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, B.L., Heiligenberg, W., and Matsubara, J., 1981, The neural basis for a sensory filter in the jamming avoidance response: No grandmother cells in sight., J. Comp. Physiol. A, 145:153.

    Article  Google Scholar 

  • Rees, A., and Palmer, A.R.,1989, Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broad-band noise, J. Acoust. Soc. Am., 85:1978.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G.J., 1986, A temporal processing mechanism for all species? Brain Behav. Evol., 28: 134.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G.J., and Capranica, R.R., 1983, Temporal processing in the central auditory system of the leopard frog (Rana pipiens), Science, 219:1087.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G.J., and Capranica, R.R., 1984, Processing amplitude-modulated sounds by the auditory midbrain of two species of toads: Matched temporal filters,J. Comp. Physiol. A, 154: 211.

    Article  Google Scholar 

  • Rose, G.J., and Capranica, R.R., 1985, Sensitivity to amplitude modulated sounds in the anuran auditory system, J. Neurophysiol., 53:446.

    PubMed  CAS  Google Scholar 

  • Rose, G.J., and Heiligenberg, W., 1986, Neural coding of difference frequencies in the midbrain of the electric fish Eigenmannia: Reading the sense of rotation in an amplitude-phase plane, J. Comp. Physiol. A, 158:613.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G.J., and Call, S.J., 1992, Evidence for the role of dendritic spines in the temporal filtering properties of neurons: The decoding question and beyond, Proc. Natl. Acad. Sci. USA, 89:9662.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G.J., and Call, S.J., 1993, Temporal filtering properties of midbrain neurons in an electric fish: Implications for the function of dendritic spines, J. Neurosci., 13: 1178.

    PubMed  CAS  Google Scholar 

  • Rose, G.J., Brenowitz, E.A., and Capranica, R.R., 1985, Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs, J. Comp. Physiol. A, 157:763.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G.J., Zelick, R., and Rand, A.S., 1988, Auditory processing of temporal information in a neotropical frog is independent of signal intensity, Ethology, 77:330.

    Article  Google Scholar 

  • Rose, G.J., Kawasaki, M., and Heiligenberg, W., 1988, “Recognition units” at the top of a neuronal hierarchy? J. Comp. Physiol. A, 162:759.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, M.J., 1985), “The Tungara Frog ”, University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Schildberger, K., 1984, Temporal selectivity of identified auditory neurons in the cricket brain, J. Comp. Physiol. A, 155:171.

    Article  Google Scholar 

  • Schreiner, C.E., and Urbas, J.V., 1986, Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF), Hearing Res., 21:227.

    Article  CAS  Google Scholar 

  • Schreiner, C.E., and Urbas, J.V., 1988, Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields, Hearing Res., 32:49.

    Article  CAS  Google Scholar 

  • Walkowiak, W., 1984, Neuronal correlates of the recognition of pulsed sound signals in the grass frog, J. Comp. Physiol. A, 155:57.

    Article  Google Scholar 

  • Wells, K.D., 1977, The social behavior of anuran amphibians, Animal Behav., 25:666.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rose, G.J. (1995). Representation of Temporal Patterns of Signal Amplitude in the Anuran Auditory System and Electrosensory System. In: Covey, E., Hawkins, H.L., Port, R.F. (eds) Neural Representation of Temporal Patterns. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1919-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1919-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5785-8

  • Online ISBN: 978-1-4615-1919-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics