Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 367))

Abstract

The fermentation of milk for the production of cheese has been conducted for 8,000 years; however, a well developed understanding of the compounds involved in cheese flavor development, and the mechanism of their formation, is still lacking. Additionally, any discussion of cheese flavor development is complicated by the fact that approximately 4,000 different cheese varieties, with a variety of flavor and/or texture characteristics, are produced world-wide. The ability to manufacture this wide array of products from milk is the result of manufactures using a variety of processing conditions and microorganisms. The intent of this chapter will be to focus on the metabolic properties of lactic acid bacteria which are believed to be of general importance in cheese flavor development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baankreis, R., 1992, The role of lactococcal peptidases in cheese ripening, Ph.D. Thesis, University of Amsterdam.

    Google Scholar 

  • Bednarski, W., Gedrychowski, L., Hammond, E.G., and Nikolov, Z.L., 1989, A method for determination of α-dicarbonyl compounds, J. Dairy Sci. 72:2474.

    Article  CAS  Google Scholar 

  • Bhowmik, T., and Steele, J.L., 1993, Development of an electroporation procedure for gene disruption in Lactobacillus helveticus CNRZ 32, J. Gen. Microbiol. 139:1433.

    Article  CAS  Google Scholar 

  • Bhowmik, T., Fernandez, L., and Steele, J.L., 1993, Gene replacement in Lactobacillus helveticus CNRZ 32, J. Bacteriol. 175:6341.

    CAS  Google Scholar 

  • Bie, R., and Sjostrom, G., 1975, Autolytic properties of some lactic acid bacteria used in cheese production. Part II. Experiments with fluid substrates and cheese, Milchwissenschaft 30:739.

    CAS  Google Scholar 

  • Biswas, I., Gruss, A., Ehrlich, S.D., and Maguin, E., 1993, High-efficiency gene inactivation and replacement system for gram-positive bacteria, J. Bacteriol. 175:3628.

    CAS  Google Scholar 

  • Bruinenberg, P.G., Vos, P., and de Vos, W.M., 1992, Proteinase overproduction in Lactococcus lactis strains: regulation and effect on growth and acidification in milk, Appl. Environ. Microbiol. 58:78.

    CAS  Google Scholar 

  • Christensen, J.E., Johnson, M.E., and Steele, J.L., 1994, Production of Cheddar cheese using a Lactococcus lactis ssp. cremoris SK11 derivative with enhanced aminopeptidase activity, Int. Dairy J. ,in press.

    Google Scholar 

  • Dalgleish, D.G., 1987, The enzymatic coagulation of milk, in “Cheese: chemistry, physics and microbiology,” Vol 1., P.F. Fox, ed., Elsevier, New York.

    Google Scholar 

  • El Soda, M.A., 1993, The role of lactic acid bacteria in accelerated cheese ripening, FEMS Microbiol. Rev. 12:239.

    Article  Google Scholar 

  • Exterkate, F.A., and Airing, A.C., 1993, The conversion of αs1–casein-(1–23)-fragment by the free and bound form of the cell-envelope proteinase of Lactococcus lactis subsp. cremohs under conditions prevailing in cheese, System. Appl. Microbiol. 16:1.

    CAS  Google Scholar 

  • Fernandez, L., and Steele, J.L., 1993, Glutathione content of lactic acid bacteria, J. Dairy Sci. 76:1233.

    Article  Google Scholar 

  • Fox, P.F., 1989, Proteolysis during cheese manufacture and ripening, J. Dairy Sci. 72:1379.

    Article  CAS  Google Scholar 

  • Griffith, R., and Hammond, E.G., 1989, Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds, J. Dairy Sci. 72:604.

    Article  CAS  Google Scholar 

  • Guigoz, Y., and Solms, J., 1976, Bitter peptides, occurrence and structure, Chem. Senses Flavour 2:71.

    Article  CAS  Google Scholar 

  • Hemme, D., Bouilanne, C., Metro, F., Desmazeaud, M.-J., 1982, Microbial catabolism of amino acids during cheese ripening, Set Aliments 2:113.

    CAS  Google Scholar 

  • Hugenholtz, J., 1993, Citrate metabolism in lactic acid bacteria, FEMS Microbiol. Rev. 12:165.

    Article  CAS  Google Scholar 

  • Kok, J., 1990, Genetics of the proteolytic system of lactic acid bacteria, FEMS Microbiol. Rev. 87:15.

    Article  CAS  Google Scholar 

  • Kowalewska, J., Zelazowska, H., Babuchowski, A., Hammond, E.G., Glatz, B.A., and Ross, F., 1985, Isolation of aroma-bearing material from Lactobacillus helveticus culture and cheese, J. Dairy Sci. 68:2165.

    Article  CAS  Google Scholar 

  • Kristofferson, T., 1967, Interrelationships of flavor and chemical changes in cheese, J. Dairy Sci. 50:279.

    Article  Google Scholar 

  • Langsrud, T., Landaas, A., Castberg, H.B., 1987, Autolytic properties of different strains of group N streptococci, Milckwissenschaft 42:556.

    Google Scholar 

  • Leenhouts, K.J., Kok, J., and Venema, G., 1991, Replacement recombination in Lactococcus lactis, J. Bacteriol. 173:4794.

    CAS  Google Scholar 

  • Lemieux, L., and Simard, R.E., 1992, Bitter flavour in dairy products. II. A review of bitter peptides from caseins: their formation, isolation and identification, structure masking and inhibition, Lait 72:335.

    Article  CAS  Google Scholar 

  • Lopez-Fandino, R., and Ardo, Y., 1991, Effect of heat treatment on the proteolytic peptidolytic enzyme system of a Lactobacillus delbrueckii subsp. bulgaricus strain. J. Dairy Res. 58:469.

    Article  CAS  Google Scholar 

  • Martley, F.G., and Lawrence, R.C., 1972, Cheddar cheese flavour. II. Characteristics of single strain starters associated with good or poor flavour development, N.Z. J. Dairy Sci. Technol. 7:38.

    CAS  Google Scholar 

  • Mayo, B., Kok, J., Venema, K., Bockelmann, W., Teuber, M., Reinke, H., and Venema, G., 1991, Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris, Appl. Environ. Microbiol. 57:38.

    CAS  Google Scholar 

  • Mayo, B., Kok, J., Bockelmann, W., Haandrikman, A., Leenhouts, K., and Venema, G., 1993, Effect of X-prolyl dipeptidyl aminopeptidase deficiency on Lactococcus lactis, Appl. Environ. Microbiol. 59:2049.

    CAS  Google Scholar 

  • McDonald, S., 1993, Role of α-dicarbonyl compounds produced by lactic acid bacteria on the flavor and color of cheeses, Ph.D. Thesis, University of Wisconsin-Madison.

    Google Scholar 

  • Mollet, B., Knol, J., Poolman, B., Marciset, O., Delley, M., 1993, Directed genomic integration, gene replacement, and integrative gene expression in Streptococcus thermophilus, J. Bacteriol. 175:4315.

    CAS  Google Scholar 

  • Olson, N.F., 1990, The impact of lactic acid bacteria on cheese flavor, FEMS Microbiol. Rev. 87:131.

    Article  CAS  Google Scholar 

  • Peterson, S.D., and Marshall, R.T., 1990, Nonstarter lactobacilli in Cheddar cheese: a review, J. Dairy Sci. 73:1395.

    Article  Google Scholar 

  • Pritchard, G.G., and Coolbear, T., 1993, The physiology and biochemistry of the proteolytic system in lactic acid bacteria, FEMS Microbiol. Rev. 12:179.

    Article  CAS  Google Scholar 

  • Reps, A., Hammond, E.G., and Glatz, B.A., 1987, Carbonyl compounds produced by the growth of Lactobacillus bulgaricus, J. Dairy Sci. 70:559.

    Article  CAS  Google Scholar 

  • Swaisgood, H.E, 1982, The chemistry of milk protein, in “Developments in Dairy Chemistry,” Vol. 1, P.F. Fox, ed., Elsevier Applied Science Publ., London.

    Google Scholar 

  • Steele, J.L., and Ünlü, G., 1992, Impact of lactic acid bacteria on cheese flavor development, Food Technol. 46(11): 128.

    CAS  Google Scholar 

  • Thomas, T.D., 1987, Cannibalism among bacteria found in cheese, N. Z. J. Dairy Sci. 22:215.

    Google Scholar 

  • van Alen-Boerrigter, I.J., Baankreis, R., and de Vos, W.M., 1991, Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N, Appl. Environ. Microbiol. 57:2555.

    Google Scholar 

  • Visser, F.M.W., 1977, Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavor development in Gouda cheese. 3. Protein breakdown: analysis of the soluble nitrogen and amino acid nitrogen factors, Neth. Milk Dairy J. 31:120.

    Google Scholar 

  • Visser, S., 1993, Proteolytic enzymes and their relation to cheese ripening and flavor: an overview, J. Dairy Sci. 76:329.

    Article  CAS  Google Scholar 

  • Visser, S., Slangen, K.J., Hup, G., and Stadhouders, J., 1983, Bitter flavour in cheese. 3. Comparative gel-chromatographic analysis of hydrophobic peptide fractions from twelve Gouda-type cheeses and identification of bitter peptides isolated from a cheese made with Streptococcus cremoris strain HP, Neth. Milk Dairy J. 37:181.

    CAS  Google Scholar 

  • Walter, R., Simmons, W.H., and Yoshimoto, T., 1980, Proline specific endo- and exopeptidases, Mol. Cell. Biochem. 30:111.

    Article  CAS  Google Scholar 

  • Wiederholt, K.M., and Steele, J.L., 1994, Glutathione accumulation in lactococci, J. Dairy Sci. 77:1183.

    Article  CAS  Google Scholar 

  • Yamasaki, Y., and Mackawa, K., 1978, A peptide with a delicious taste, Agric. Biol. Chem. 42:1761.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steele, J.L. (1995). Contribution of Lactic Acid Bacteria to Cheese Ripening. In: Malin, E.L., Tunick, M.H. (eds) Chemistry of Structure-Function Relationships in Cheese. Advances in Experimental Medicine and Biology, vol 367. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1913-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1913-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5782-7

  • Online ISBN: 978-1-4615-1913-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics