Skip to main content

Chronobiological Activity of Melatonin: Mediation by Gabaergic Mechanisms

  • Chapter
The Pineal Gland and Its Hormones

Part of the book series: NATO ASI Series ((NSSA,volume 277))

Abstract

In the last years, considerable efforts have been devoted to examine the participation of brain γ-aminobutyric acid (GABA) neurons in circadian phenomena. The importance of gabaergic neurons in circadian organization of brain function is underlined by the fact that almost every single neuron in the suprachiasmatic nucleus contains GABA. In addition, drugs affecting GABA function, like benzodiazepines (BZP) or melatonin, are effective to phase-shift circadian rhythms. Several data point out to a melatonin interaction with GABA-containing neurons in the CNS. Melatonin injection decreases brain GABA concentration, modifies GABA-BZP binding to brain membranes, and increases GABA turnover rate, GABA-induced chloride influx in rat hypothalamus, and the electrophysiological effects of GABA in rabbit cerebral cortex. As other GABA-positive ligands, melatonin inhibited cage-convulsant (TBPS) binding to rat brain membranes. Under long photoperiods, a significant rhythm of GABA turnover was detected in the areas studied (cerebral cortex, preoptic-medial basal hypothalamus, cerebellum and pineal gland) of Syrian hamsters, with maxima at night. Under short photoperiods the synchronization in turnover rate among the remaining regions was lost. This effect was attributed to the different melatonin secretory patterns under both lighting environments. In a number of studies carried out to define the participation of gabaergic mechanisms in behavioral effects of melatonin in rodents, we found that: (1) The administration of the central-type BZP antagonist flumazenil blunted the analgesic response to melatonin in mice, indicating that time-dependent melatonin analgesia was sensitive to central-type BZP antagonism. (2) Flumazenil although unable by itself to modify locomotor activity or induced seizures in rodents, significantly attenuated the inhibitory effects of melatonin. (3) The anxiolytic and pro-exploratory melatonin properties assessed in rats in a plus-maze indicated maximal effects of melatonin at night, with absence of effects at noon and a weak activity at the beginning of the light phase, an effect blunted by administration of flumazenil. (4) In Syrian hamsters, flumazenil inhibited melatonin-induced re-entrainment of locomotor activity and body temperature rhythms of Syrian hamsters after phase-advancing the L:D cycle. Collectively, the results are compatible with the view that melatonin activity on circadian rhythmicity was sensitive to central-type BZP antagonism. Melatonin and BZP seem to have in common an activity on central gabaergic neurons participating in circadian organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuña-Castroviejo, D., Lowenstein, P.R., Rosenstein, R., and Cardinali, D.P., 1986a, Diurnal variations of benzodiazepine binding in rat cerebral cortex: disruption by pinealectomy, J Pineal Res, 3:101–109.

    Article  PubMed  Google Scholar 

  • Acuña-Castroviejo, D., Rosenstein, R.E., Romeo, H.E., and Cardinali, D.P., 1986b, Changes in gamma-aminobutyric acid high affinity binding to cerebral cortex membranes after pinealectomy or melatonin administration to rats, Neuroendocrinology, 43:24–31.

    Article  PubMed  Google Scholar 

  • Aguilar-Robledo, R., Verduzco-Carbajal, L., Rodriguez, C., Mendes-Franco, J., Moran, J., and Peres de la Mora, M., 1993, Circadian rhythmicity in the GABAergic system in the suprachiasmatic nuclei of the rat, Neurosci Lett, 157:199–202.

    Article  Google Scholar 

  • Alexiuk, N.A. and Vriend, J., 1991, Effects of daily afternoon melatonin administration on monoamine accumulation in median eminence and striatum of ovariectomized hamsters receiving pargyline, Neuroendocrinology, 54:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Anis, Y., Nir, I., Schmidt, U., and Zisapel, N, 1992, Modification by oxazepam of the diurnal variations in brain 125I-melatonin binding sites in sham-operated and pinealectomized rats, J Neural Transm Gen Sect, 89:155–166.

    Article  PubMed  CAS  Google Scholar 

  • Anton-Tay, F., 1974, Melatonin: effects on brain function, Adv Biochem Psychopharmacol, 11:315–324.

    PubMed  CAS  Google Scholar 

  • Arendt, J., Aldhous, M., English, J., Marks, V., and Arendt, J.H., 1987, Some effects of jet-lag and their alleviation by melatonin, Ergonomics, 30:1379–1393.

    Article  Google Scholar 

  • Armstrong, S.M., 1991, Entrainment of vertebrate circadian rhythms by melatonin, Adv Pineal Res, 5:259–266.

    CAS  Google Scholar 

  • Barkai, A.I., Potegal, M., and Kowalik, S., 1985, Decline of GABA uptake in the hamster preoptic area following light onset, J Neurochem, 44:987–989.

    Article  PubMed  CAS  Google Scholar 

  • Bowery, N.G., 1993, GABAB receptor pharmacology, Annu Rev Pharmacol Toxicol, 33:109–147.

    Article  PubMed  CAS  Google Scholar 

  • Card, J.P. and Moore, R.Y., 1991, The organization of visual circuits influencing the circadian activity of the suprachiasmatic nucleus, in: “Suprachiasmatic Nucleus. The Mind’s Clock”, Klein, D.C., Moore, R.Y., and Reppert, S.M., eds., Oxford University Press, New York, pp.51–76.

    Google Scholar 

  • Caruso, D.M., Owczarzak, M.T., and Poucho, M.G., 1990, Colocalization of substance P and GABA in retinal ganglion cells: A computer-assisted visualization, Vis Neurosci, 5:389–394.

    Article  PubMed  CAS  Google Scholar 

  • Casanueva, F., Apud, J.A., Masotto, C., Cocchi, D., Locatelli, V., Racagni, G., and Muller, E.E., 1984, Daily fluctuations in the activity of the tuberoinfundibular GABAergic system and prolactin levels, Neuroendocrinology, 39:367–370.

    Article  PubMed  CAS  Google Scholar 

  • Cassone, V.M., Chesworth, M.J., and Armstrong, S.M., 1986, Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei., Physiol Behav, 36:1111–1121.

    Article  PubMed  CAS  Google Scholar 

  • Cattabeni, F., Maggi, A., Monduzzi, M., De Angellis, L., and Racagni, G., 1978, GABA: circadian fluctuations in rat hypothalamus, J Neurochem, 31:565–567.

    Article  PubMed  CAS  Google Scholar 

  • Cherubini, E., Gaiarsa, J.L., and Ben-Ari, Y., 1991, GABA: An excitatory transmitter in early postnatal life, Trends Neurosci, 14:515–519.

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich, M.L., Mogilnicka, E., and Areso, P. M, 1990, Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test, Eur J Pharmacol, 182:313–325.

    Article  PubMed  CAS  Google Scholar 

  • Fang, J.M. and Dubocovich, M.L., 1990, Activation of melatonin receptor sites retarded the depletion of norepinephrine following inhibition of synthesis in the C3H/HeN mouse hypothalamus, J Neurochem, 55:76–82.

    Article  PubMed  CAS  Google Scholar 

  • File, S.E. and Pellow, S., 1986, Intrinsic actions of the benzodiazepine receptor antagonist Ro 15–1788, Psychopharmacol, 88:1–11.

    Article  CAS  Google Scholar 

  • Fiszman, M.L., Behar, T., Lange, G.D., Smith, S. V., Novotny, E.A., and Barker, J.L., 1993, Embryonic and early postnatal hippocampal cells respond to nanomolar concentrations of muscimol, Dev Brain Res, 73:243–251.

    Article  CAS  Google Scholar 

  • Goldman, B.D. and Nelson, R.J., 1993, Melatonin and seasonality in mammals, in: “Melatonin.Biosynthesis, Physiological Effects, and Clinical Applications”, Yu, H. and Reiter, R.J., eds., CRC Press, Boca Raton, pp.225–252.

    Google Scholar 

  • Golombek, D.A. and Cardinali, D.P., 1993, Melatonin accelerates re-entrainment after phase advance of the light-dark cycle in Syrian hamsters. Antagonism by flumazenil, Chronobiol Int 10:435–441.

    Article  CAS  Google Scholar 

  • Golombek, D.A., Escolar, E., Burin, L., Brito Sanchez, M.G., and Cardinali, D.P., 1991a, Time-dependent melatonin analgesia in mice: inhibition by opiate or benzodiazepine antagonism, Eur J Pharmacol, 194:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Golombek, D.A., Escolar, E., Burin, L., Brito Sanchez, M.G., and Cardinali, D.P., 1992a, Chronopharmacology of melatonin: inhibition by benzodiazepine antagonism, Chronobiol Int, 9:124–131.

    Article  PubMed  CAS  Google Scholar 

  • Golombek, D.A., Escolar, E., and Cardinali, D.P., 1991b, Melatonin-induced depression of locomotor activity in hamsters: time dependency and inhibition by the central type benzodiazepine antagonist Ro 15–1788, Physiol Behav, 49:1091–1098.

    Article  PubMed  CAS  Google Scholar 

  • Golombek, D.A., Fernandez Duque, D., Burin, L., Brito, Sanchez, M.G., and Cardinali, D.P., 1992b, Time-dependent anticonvulsant activity of melatonin in hamsters, Eur J Pharmacol, 210:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Gomar, M.D., Castillo, J.L., del, Aguila, C.M., Fernandez, B., and Acuna-Castroviejo, D, 1993, Intracerebroventricular injection of naloxone blocks melatonin-dependent brain [3H]-flunitrazepam binding, Neuroreport, 4:987–993.

    Article  PubMed  CAS  Google Scholar 

  • Guardiola-Lemaitre, B., Lenegre, A., and Porsolt, R. D, 1992, Combined effects of diazepam and melatonin in two tests for anxiolytic activity in the mouse, Pharmacol Biochem Behav, 41:405–408.

    Article  PubMed  CAS  Google Scholar 

  • Horton, T.H., Ray, S.L., Rollag, M.D., Yellon, S.M., and Stetson, M.H., 1992, Maternal transfer of photoperiodic information in Siberian hamsters. V. Effects of melatonin implants are dependent on photoperiod, Biol Reprod, 47:291–296.

    Article  PubMed  CAS  Google Scholar 

  • Kanterewicz, B.I., Golombek, D.A., Rosenstein, R.E., and Cardinali, D.P., 1993, Diurnal changes of GABA turnover rate in brain and pineal gland of Syrian hamsters, Brain Res Bull, 31:661–666.

    Article  PubMed  CAS  Google Scholar 

  • Kennaway, D.J., Royles, P., Webb, H., and Carbone, F., 1988b, Effects of protein restriction, melatonin administration, and short daylength on brain benzodiazepine receptors in prepubertal male rats, J Pineal Res, 5:455–467.

    Article  PubMed  CAS  Google Scholar 

  • Lewy, A., Sack, R.L., and Latham, J., 1991, Melatonin and the acute suppressant effect of light may help regulate circadian rhythms in humans, Adv Pineal Res, 5:285–293.

    CAS  Google Scholar 

  • Liou, S.Y., Shibata, S., Albers, H.E., and Ukei, S., 1990, Effects of GABA and anxiolytics on the single unit discharge of suprachiasmatic neurons in rat hypothalamic slices, Brain Res Bull, 25:103–107.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, P.R., Rosenstein, R.E., and Cardinali, D.P., 1985, Melatonin reverses pinealectomy-induced decrease of benzodiazepine binding in rat cerebral cortex, Neurochem Int, 7:675–681.

    Article  PubMed  CAS  Google Scholar 

  • Marangos, P.J., Patel, J., Hirata, F., Sonhein, D., Paul, S.M., Skolnick, P., and Goodwin, F., 1981, Inhibition of diazepam binding by tryptophan derivatives including melatonin and its brain metabolite N-acetyl-5-methoxykynurenamine, Life Sci, 29:259–267.

    Article  PubMed  CAS  Google Scholar 

  • Masson, R., Biello, S.M., and Harrington, M.E., 1991, The effects of GABA and benzodiazepines on neurons in the suprachiasmatic nucleus (SCN) of Syrian hamsters, Brain Res, 552:53–57.

    Article  Google Scholar 

  • McArthur, A.J., Gillette, M.U., and Prosser, R. A, 1991, Melatonin directly resets the rat suprachiasmatic circadian clock in vitro, Brain Res, 565:158–161.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.Y. and Speh, J.C., 1993, GABA is the principal neurotransmitter of the circadian system, Neurosci Lett, 150:112–116.

    Article  PubMed  CAS  Google Scholar 

  • Niles, L.P. and Peace, C.H., 1990, Allosteric modulation of t-[35S] butylbicyclo-phosphothionate binding in rat brain by melatonin, Brain Res Bull, 24:635–638.

    Article  PubMed  CAS  Google Scholar 

  • Nir, I., Behroozi, K., Assael, M., Ivriani, I., and Sulman, F.G., 1968, Changes in the electrical activity of the brain following pinealectomy, Neuroendocrinology, 4:122–127.

    Article  Google Scholar 

  • Ralph, M.R. and Menaker, M., 1989, GABA regulation of circadian responses to light. I. Involvement of GABAA-benzodiazepine and GABAB receptors, J Neurosci, 9:2858–2865.

    PubMed  CAS  Google Scholar 

  • Reiter, R.J., 1991, Pineal melatonin: Cell biology of its synthesis and of its physiological interactions, Endocrine Rev, 12:151–180.

    Article  CAS  Google Scholar 

  • Roberts, E., 1986, What do GABA neurons really do? They make possible variability generation in relation to demand, Exp Neurol, 93:279–290.

    Article  PubMed  CAS  Google Scholar 

  • Romijn, H., 1978, The pineal, a tranquillizing organ?, Life Sci, 23:2257–2274.

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein, R.E. and Cardinali, D.P., 1986, Melatonin increases in vivo GABA accumulation in rat hypothalamus, cerebellum, cerebral cortex and pineal gland, Brain Res, 398:403–406.

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein, R.E. and Cardinali, D.P., 1990, Central gabaergic mechanisms as target for melatonin activity, Neurochem Int, 17:373–379.

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein, R.E., Estevez, A., and Cardinali, D.P., 1989, Time-dependent effect of melatonin on glutamic acid decarboxylase activity and 36Cl-influx in rat hypothalamus, J Neuroendocrinol, 1:443–447.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Cassone, V.M., and Moore, R.Y., 1989, Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro, Neurosci Lett, 97:140–144.

    Article  PubMed  CAS  Google Scholar 

  • Sieghart, W., 1992, GABAA receptors: Ligand-gated Cl-ion channels modulated by multiple drug-binding sites, Trends Pharmacol Sci, 13:446–450.

    Article  PubMed  CAS  Google Scholar 

  • Stankov, B., Biella, B., Panara, C., Lucini, V., Capsoni, S., Fauteck, J., Cozzi, B., and Fraschini, F., 1992, Melatonin signal transduction and mechanism of action in the central nervous system: Using the rabbit cortex as a model, Endocrinology, 130:2152–2159.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cardinali, D.P., Golombek, D.A., Rosenstein, R.E., Kanterewicz, B.A., Fiszman, M. (1995). Chronobiological Activity of Melatonin: Mediation by Gabaergic Mechanisms. In: Fraschini, F., Reiter, R.J., Stankov, B. (eds) The Pineal Gland and Its Hormones. NATO ASI Series, vol 277. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1911-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1911-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5781-0

  • Online ISBN: 978-1-4615-1911-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics