Expression of Neurotransmitter Receptor Subtypes and Subunits in the Mammalian Pineal Gland

  • M. Møller
  • P. Phansuwan-Pujito
  • G. Mick
Part of the NATO ASI Series book series (NSSA, volume 277)

Abstract

The mammalian pineal gland receives multiple pinealopetal nervous projections (for surveys see Korf and Møller, 1984; Korf and Møller, 1985; Møller et al., 1991). In all investigated species, the gland is innervated by sympathetic nerve fibres originating from perikarya located in the superior cervical ganglia (Kappers, 1960). Further, parasympathetic nerve fibres have been found to innervate the gland in the monkey (Kenny, 1965; Nielsen and Møller, 1975), rabbit (Romijn, 1975), and gerbil (Shiotani et al., 1986). Also nuclei located in the forebrain project to the pineal gland, via the pineal stalk, connecting the gland directly with the optic system and the hypothalamus (central innervation) (Møller and Korf, 1983a,b; Møller and Korf, 1987; Mikkelsen and Møller, 1990; Fink-Jensen and Møller, 1991; Mikkelsen et al., 1991; Larsen et al., 1991). In the rodents, these central pinealopetal fibres mostly terminate in the rostral part of the pineal complex, e.g. the deep pineal gland and the pineal stalk (Møller,1992)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerbach, D.A., Klein, D.C., Woodward, B, and Auerbach, G.D., 1981, Neonatal rat pinealocytes: Typical and atypical characteristics of 125I-iodohydroxybenzylpindolol binding and adenosine 3‘,5’-monophosphate accumulation. Endocrinolgy, 108:559.CrossRefGoogle Scholar
  2. Cozzi, B., Mikkelsen, J.D., Ravault, J.-P., and Møller, M., 1992, Neuropeptide Y (NPY) and C-flanking peptide of NPY in the pineal gland of normal and ganglionectomized sheep. J.Comp.Neurol., 316:238.PubMedCrossRefGoogle Scholar
  3. Cozzi, B., Mikkelsen, J.D., Ravault, J.-P., Locatelli, A., Fahrenkrug, J., Zhang, E.-T., and Møller, M., 1994, The distribution of peptide histidine-isoleucine (PHI)-and vasoactive instestinal peptide (VIP)-immunoreactive nerve fibres in the sheep pineal gland is not affected by superior cervical ganglionectomy. J.Comp.Neurol., 343:72PubMedCrossRefGoogle Scholar
  4. Ebadi, M., Hexum, T.D., Pfeiffer, R.F., and Govitrapong, P., 1989, Pineal and retinal peptides and their receptors. Adv.Pineal Res. 7:1.CrossRefGoogle Scholar
  5. Fink-Jensen, A., and Møller, M., 1991, A direct neuronal projection from the lateral hypothalamic area to the rostral part of the pineal complex in the rat. An anterograde neuron-tracing study using Phaseolus vulgaris leucoagglutinin. Adv.Pineal Res. 5:21.Google Scholar
  6. Finocchiaro, L.M.E., Scheucher, A., Finkelman, S., Nahmod, V.E., and Pirola, C.J., 1989, Muscarinic effects on the hydroxy-methoxyindole pathway in the rat pineal gland. J.Endocrinology, 123;205CrossRefGoogle Scholar
  7. Govitrapong P., and Ebadi M, 1988, The inhibition of pineal arylalkylamine N-acetyltransferase by glutamic acid and its analogues. Neurochem Int. 13:223.PubMedCrossRefGoogle Scholar
  8. Govitrapong P., Ebadi M., and Murrin L.C., 1986, Identification of a Cl-/Ca2+ dependent glutamate (quisqualate) binding site in bovine pineal organ. J.Pineal Res. 3, 223.PubMedCrossRefGoogle Scholar
  9. Govitrapong, P., Phansuwan-Pujito, P., and Ebadi, M., 1989, Studies on the properties of muscarinic cholinergic receptor sites in bovine pineal gland. Comp.Biochem.Physiol. 94:159.CrossRefGoogle Scholar
  10. Kappers, J.A., 1960, The development, topographical relations, and innervation of the epiphysis cerebri in the albino rat. Z.Zellforsch. 52:163.PubMedCrossRefGoogle Scholar
  11. Kenny, G.C.T., 1965, The innervation of the mammalian pineal body (A comparative study). Proc.Aust.Assoc.Neurol. 3:133.PubMedGoogle Scholar
  12. Klein, D.C., 1993, The mammalian melatonin rhythm generating system, in: “Light and biological rhythms in man” Pergamon Press, New York.Google Scholar
  13. Klein, D.C., and Weller, J.L., 1973, Adrenergic-adenosine 3‘,5’-monophosphate regulation of serotonin N-acetyltransferase activity and the temporal relationship of serotonin N-acetyltransferase activity to synthesis of 4H-melatonin in the cultured rat pineal gland. J.Pharmacol.Exp.Ther. 186:516.PubMedGoogle Scholar
  14. Korf, H.-W., and Møller, M., 1984, The innervation of the mammalian pineal gland with special reference to central pinealopetal projections. Pineal Res.Rev, 2:41.Google Scholar
  15. Korf, H,-W., and Møller, M., 1985, The central innervation of the mammalian pineal organ. In: “The Pineal Gland,” B. Mess, Cs.Rúzsas, L. Tima, P. Pévet, eds., Akademia Kiado, Budapest.Google Scholar
  16. Kus, L., Handa, R.J., and McNulty, J.A., 1993, Characterization of a [3H]glutamate binding site in rat pineal gland: enhanced affinity following superior cervical ganglionectomy. J. Pineal Res. 14:39.PubMedCrossRefGoogle Scholar
  17. Kus, L., Handa, R.J., and McNulty, J.A., 1994, Glutamate inhibition of the adrenergic-stimulated production of melatonin in rat pineal gland in vitro. J.Neurochem. 62:2241.PubMedCrossRefGoogle Scholar
  18. Laitinen, J.T., Torda, T., and Saavedra, J.M., 1989, Cholinergic stimulation of phosphoinositide hydrolysis in the rat pineal gland. Eur.J.Pharmacol., 161:237.PubMedCrossRefGoogle Scholar
  19. Laitinen, J.T., Vakkuri, O., and Saavedra, J.M. 1992, Pineal muscarinic phosphoinositide responses: age-associated sensitization, agonist-induced desensitization and increase in melatonin release from cultured pineal gland. Neuroendocrin., 55:492.CrossRefGoogle Scholar
  20. Larsen, P.J., Møller, M., and Mikkelsen, J.D., 1991), Efferent projections from the periventricular and medial parvocellular subnuclei of the hypothalamic paraventricular nucleus to circumventricular organs of the rat. A Phaseolus-vulgaris leucoagglutinin (PHA-L) tracing study. J.Comp.Neurol., 306:462.PubMedCrossRefGoogle Scholar
  21. McNulty, J., MacReynolds, H.D., and Bowman, D.C., 1990, Pineal gland free amino acids and indoles during postnatal development of the rat: correlation in individual glands. J. Pineal Res. 9:65.PubMedCrossRefGoogle Scholar
  22. McNulty, J.A., Kus, L., Ottersen, O.P., 1992, Immunocytochemical and circadian biochemical analysis of neuroactive amino acids in the pineal gland of the rat: effect of superior cervical ganglionectomy. Cell Tiss.Res. 269:515.CrossRefGoogle Scholar
  23. Mikkelsen, J.D, and Møller, M., 1990, A direct neuronal projection from the intergeniculate leaflet of the lateral geniculate nucleus to the deep pineal gland of the rat, demonstrated with Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res., 520:342.PubMedCrossRefGoogle Scholar
  24. Mikkelsen, J.D, Cozzi, B., and Møller, M., 1991, Efferent projections from the lateral geniculate nucleus to the pineal complex of the Mongolian gerbil (Meriones unguicula-tus). Cell Tissue Res., 264:95.PubMedCrossRefGoogle Scholar
  25. Mikkelsen, J.D., Panula, P., and Møller, M., 1992, Histamine-immunoreactive nerve fibres in the rat pineal gland: evidence for a histaminergic central innervation. Brain Res., 597:200.PubMedCrossRefGoogle Scholar
  26. Møller, M., 1992, The fine structure of the pinealopetal innervation of the mammalian pineal gland. J.Microsc.Res.Techn., 21(3)188.CrossRefGoogle Scholar
  27. Møller, M., and van Veen, Th. ,1981, Fluorescence Histochemistry of the Pineal Gland. In: The Pineal Gland, vol. 1. Anatomy and Biochemistry, R.J. Reiter, Ed., CRC Press, West Palm Beach.Google Scholar
  28. Møller, M., and Korf, H.-W., 1983a, Central innervation of the pineal organ of the Mongolian gerbil. A histochemical and lesion study. Cell Tissue Res., 230:259.PubMedGoogle Scholar
  29. Møller, M., and Korf, H.-W. ,1983b, The origin of central pinealopetal nerve fibres in the Mongolian gerbil as demonstrated by the retrograde transport of horseradish peroxidase. Cell Tissue Res. 230:273.PubMedGoogle Scholar
  30. Møller, M., and Korf, H.-W., 1987, Nervous connections between the brain and the pineal gland of the golden hamster (Mesocricetus auratus). A horseradish peroxidase study. Cell Tissue Res., 247:145.PubMedCrossRefGoogle Scholar
  31. Møller, M., and Mikkelsen, J.D., 1991, Molecular messengers in brain-pineal interactions. In: Recent Advances in Cellular and Molecular Biology. Vol.3.: Neurobiochemical transmitter pathways, adrenoceptors and muscarinic receptors,(R.J.Wegmann and M.A. Wegman, eds., Peeters Press; Leuven.Google Scholar
  32. Møller, M., Mikkelsen, J.D., Fahrenkrug, J., and Korf, H.-W., 1985, The presence of vasoactive intestinal polypeptide (VIP)-like-immunoreactive nerve fibres and VIP-receptors in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). An Immunohistochemical and receptor-autoradiographic study. Cell Tissue Res. 241:333.PubMedCrossRefGoogle Scholar
  33. Møller, M., Ravault, J.-P., Cozzi, B., Zhang, E., Phansuwan-Pujito, Larsen, P.J., and Mikkelsen, J.D., 1991, The multineuronal input to the mammalian pineal gland. Adv.Pineal Res., 6:3.Google Scholar
  34. Møller, Phansuwan-Pujito, P., Govitrapong, P., and Schmidt, P., 1993, Indications for a central innervation of the bovine pineal gland with substance P-immunoreactive nerve fibres. Brain Res., 611:347.PubMedCrossRefGoogle Scholar
  35. Nielsen, J.T., and Møller, M., 1975, Nervous connections between the brain and the pineal gland in the cat (Felis catus) and the monkey (cercopithecus aethiops). Cell Tissue Res. 161:293.PubMedCrossRefGoogle Scholar
  36. Olcese, J., 1991, Neuropeptide Y: An endogenous inhibitor of norepinephrine stimulated melatonin secretion in the rat pineal gland. J.Neurochem. 57:943.PubMedCrossRefGoogle Scholar
  37. Phansuwan-Pujito, P., Govitrapong, P., and Ebadi, M., 1991a, Cholinergic receptor agonists inhibit the activity of serotonin N-acetyltrasnferase in bovine pineal explants. Neurochem.Res., 16:885CrossRefGoogle Scholar
  38. Phansuwan-Pujito, P., Mikkelsen, J.D., Govitrapong, P., and Møller, M., 1991b, Cholinergic innervation of the bovine pineal gland visualised by immunohistochemical detection of choline acetyltransferase (ChAT)-immunoreactive nerve fibres. Brain Res., 545:49.PubMedCrossRefGoogle Scholar
  39. Phansuwan-Pujito, P., Larsen, P.J., and Møller, M., 1994, Expression of muscarinic receptors of subtype m1 in the rat pineal gland. Adv.Pineal Res., vol.8. pp.Google Scholar
  40. Romijn, H.J., 1975, Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L.). III. An electron microscopic investigation of the innervation. Cell Tissue Res. 157:25.PubMedCrossRefGoogle Scholar
  41. Sato, K., Kiyama, H., Shimada, S., and Tohyama, M., 1993, Gene expression of kainate (KA)-type and NMDA receptors, and of a glycine transporter in the rat pineal gland. Neuroendocrinololy 58:77.CrossRefGoogle Scholar
  42. Schröder, H-J., 1986, Neuropeptide Y (NPY)-like immunoreactivity in the peripheral and central nerve fibres of the golden hamster (mesocricetus auratus) with special respect to pineal gland innervation. Histochemistry 85:321.PubMedCrossRefGoogle Scholar
  43. Seeburg, P.H., 1993, The molecular biology of mammalian glutamate receptor channels. Trends in Neurosci. 16(9):359.CrossRefGoogle Scholar
  44. Shiotani, Y., Yamano, M., Shiosaka, S., Emson, P.C., Hillyard, C.J., Girgis, S., and McIntyre, I., 1986, Distribution and origins of substance P (SP)-, calcitonin gene related peptide (CGRP)-, vasoactive intestinal polypeptide (VIP)-and neuropeptide Y (NPY)-containing nerve fibres in the pineal gland of gerbils. Neurosci. Lett. 70:187.PubMedCrossRefGoogle Scholar
  45. Tayler, R.L., Albuquerque, M.L.C., and Burt, D.R., 1980, Muscarinic receptors in pineal. Life Sci., 26:2195.CrossRefGoogle Scholar
  46. Tölle, T.R., Berthele, A., Zielgngsberger, W., Seeburg, P.H., and Wisden, W., 1993, The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J. Neurosci. 13:5009.PubMedGoogle Scholar
  47. Simonneaux, V., Ouichou, A., Craft, C., and Pévet, P., 1994, Presynaptic and postsynaptic effects of neuropeptide Y in the rat pineal gland. J.Neurochem. 62:2464.PubMedCrossRefGoogle Scholar
  48. Wartman, A.S., Branch, B., George, R., and Tayler, A.N., 1969, Evidence for a cholinergic influence in pineal HIOMT activity with changes in environmental lighting. Life Sci., 8:1263.PubMedCrossRefGoogle Scholar
  49. Wisden, W., Seeburg, P.H., 1993, A complex mosaic of high-affinity kainate receptors in rat brain. J.Neurosci. 13:3582.PubMedGoogle Scholar
  50. Yuwiler, A., 1987, Synergistic action of postsynaptic α-adrenergic receptor stimulation on vasoactive intestinal polypeptide-induced increase in pineal N-acetyltransferase activity. J.Neurochem 49:806.PubMedCrossRefGoogle Scholar
  51. Zhang, E., Mikkelsen, J.D.,and Møller, M., 1991, Tyrosine hydroxylase-and neuropeptide Y-immunoreactive nerve fibres in the pineal complex of untreated rats and rats following removal of the superior cervical ganglia. Cell Tissue Res., 265:63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Møller
    • 1
  • P. Phansuwan-Pujito
    • 2
  • G. Mick
    • 3
  1. 1.Institute of Medical AnatomyUniversity of CopenhagenDenmark
  2. 2.Dept. of Anatomy, Faculty of MedicineSrinakarinwirot, University of PrasarnmitBangkokThailand
  3. 3.G. Mick, Unité 94Institut national de la Santé et de la Recherche MédicaleBronFrance

Personalised recommendations