Skip to main content

Abstract

In the past several years, the L-arginine/NO pathway has been recognized as part of a wide-spread signal transducing system, involved in a variety of biological processes. NO is generated in a Ca2+-dependent enzymatic reaction from the amino acid L-arginine. As a potent activator of soluble guanylyl cyclase (sGC), NO exerts many of its effects through intracellular accumulation of the nucleotide cycic GMP (cGMP), which acts on multiple intracellular target proteins. In the the first part of this article, a brief synopsis will be given on enzymology of sGC related to its stimulation by NO, and in the second, more comprehensive part current knowledge about the mechanisms and regulation of NO biosynthesis will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Soud, H.M. and D.J. Stuehr, 1993, Nitric oxide synthases reveal a novel role for calmodulin in controlling electron transfer, Proc. Natl. Acad. Sci. USA 90, 10769–10772.

    Article  PubMed  CAS  Google Scholar 

  • Ahlner, J., R.G.G. Andersson, K. Torfgard and K.L. Axelsson, 1991, Organic nitrate esters - clinical use and mechanisms of actions, Pharmacol. Rev. 43, 351–423.

    PubMed  CAS  Google Scholar 

  • Assreuy, J., F.Q. Cunha, F.Y. Liew and S. Moncada, 1993, Feedback inhibition of nitric oxide synthase activity by nitric oxide, Br. J. Pharmacol. 108, 833–837.

    Article  PubMed  CAS  Google Scholar 

  • Baek, K.J., B.A. Thiel, S. Lucas and D.J. Stuehr, 1993, Macrophage nitric oxide synthase subunits purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme, J. Biol. Chem. 268, 21120–21129.

    PubMed  CAS  Google Scholar 

  • Beavo, J.A. and D.H. Reifsnyder, 1990, Primary sequence of cyclic nucleotide phosphodiesterase isoenzymes and the design of selective inhibitors, Trends Pharmacol. Sci. 11, 150–155.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J.S., T.W. Beckman, J. Chen, P.A. Marshall and B.A. Freeman, 1990, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA 87, 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S. and S.H. Snyder, 1990, Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme, Proc. Natl. Acad. Sci. USA 87, 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S., C.E. Glatt, P.M. Hwang, M. Fotuhi, T.M. Dawson and S.H. Snyder, 1991a, Nitric oxide synthase protein and messenger RNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase, Neuron 7, 615–624.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S., P.M. Hwang, C.E. Glatt, C. Lowenstein, R.R. Reed and S.H. Snyder, 1991b, Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase, Nature 351, 714–718.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S., C.D. Ferris and S.H. Snyder, 1992, Nitric oxide synthase regulatory sites - phosphorylation by cyclic AMP-dependent protein kinase, protein kinase-C, and calcium/calmodulin protein kinase identification of flavin and calmodulin binding sites, J. Biol. Chem. 267, 10976–10981.

    PubMed  CAS  Google Scholar 

  • Brüne, B. and E.G. Lapetina, 1991, Phosphorylation of nitric oxide synthase by protein kinase-A, Biochem. Biophys. Res. Commun. 181, 921–926.

    Article  PubMed  Google Scholar 

  • Buga, G.M., J.M. Griscavage, N.E. Rogers and L.J. Ignarro, 1993, Negative feedback regulation of endothelial cell function by nitric oxide, Circ. Res. 73, 808–812.

    Article  PubMed  CAS  Google Scholar 

  • Busconi, L. and T. Michel, 1993, Endothelial nitric oxide synthase - N-terminal myristoylation determines subcellular localization, J. Biol. Chem. 268, 8410–8413.

    PubMed  CAS  Google Scholar 

  • Busse, R. and A. Mülsch, 1990, Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin, FEBS Lett. 265, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Butt, E., J. Geiger, T. Jarchau, S.M. Lohmann and U. Walter, 1993, The cGMP-dependent protein kinase - gene, protein, and function, Neurochem. Res. 18, 27–42.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H.J., Q.W. Xie, J. Calaycay, R.A. Mumford, K.M. Swiderek, T.D. Lee and C. Nathan, 1992, Calmodulin is a subunit of nitric oxide synthase from macrophages, J. Exp. Med. 176, 599–604.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T. and P. Puttfarcken, 1993, Oxidative stress, glutamate, and neurodegenerative disorders, Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler, S., F. Lottspeich and B. Brüne, 1992, Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem. 267, 16771–16774.

    PubMed  CAS  Google Scholar 

  • Drapier, J.C. and J.B.J. Hibbs, 1988, Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells., J. Immunol. 140, 2829–2838.

    PubMed  CAS  Google Scholar 

  • Dwyer, M.A., D.S. Bredt and S.H. Snyder, 1991, Nitric oxide synthase - irreversible inhibition by L-NG- nitroarginine in brain invitro and invivo, Biochem. Biophys. Res. Commun. 176, 1136–1141.

    Article  PubMed  CAS  Google Scholar 

  • Evans, T., A. Carpenter and J. Cohen, 1992, Purification of a distinctive form of endotoxin-induced nitric oxide synthase from rat liver, Proc. Natl. Acad. Sci. USA 89, 5361–5365.

    Article  PubMed  CAS  Google Scholar 

  • Feelisch, M. and E.A. Noack, 1987, Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase, Eur. J. Pharmacol. 139, 19–13.

    Article  PubMed  CAS  Google Scholar 

  • Förstermann, U., A. Mülsch, E. Böhme and R. Busse, 1986, Stimulation of soluble guanylate cyclase by an acetylcholine induced endothelium derived factor from rabbit and canine arteries, Circ. Res. 58, 531–538.

    Article  PubMed  Google Scholar 

  • Förstermann, U., J.S. Pollock, H.H.H.W. Schmidt, M. Heller and F. Murad, 1991, Calmodulin-dependent endothelium-derived relaxing factor nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells, Proc. Natl. Acad. Sci. USA 88, 1788–1792.

    Article  PubMed  Google Scholar 

  • Förstermann, U., H.H.H.W. Schmidt, K.L. Kohlhaas and F. Murad, 1992, Induced RAW-264.7 macrophages express soluble and particulate nitric oxide synthase - inhibition by transforming growth factor-beta, Eur. J. Pharmacol. 225, 161–165.

    Article  PubMed  Google Scholar 

  • Furchgott, R.F. and J.V. Zawadzki, 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., 1991, Glutamate, nitric oxide and cell-cell signalling in the nervous system, Trends Neurosci. 14, 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., S.L. Charles and R. Chess-Williams, 1988, Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain, Nature 336, 385– 388.

    Article  PubMed  CAS  Google Scholar 

  • Geggel, R.L., 1993, Inhalational nitric oxide - a selective pulmonary vasodilator for treatment of persistent pulmonary hypertension of the newborn, J. Pediatr. 123, 76–79.

    Article  PubMed  CAS  Google Scholar 

  • Geller, D.A., C.J. Lowenstein, R.A. Shapiro, A.K. Nussler, M. Disilvio, S.C. Wang, D.K. Nakayama, R.L. Simmons, S.H. Snyder and T.R. Billiar, 1993, Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes, Proc. Natl. Acad. Sci. USA 90, 3491–3495.

    Article  PubMed  CAS  Google Scholar 

  • Gerzer, R., E. Böhme, F. Hofmann and G. Schultz, 1981, Soluble guanylate cyclase purified from bovine lung contains heme and copper, FEBS Lett. 132, 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli, J., K.L. Campos and S. Kaufman, 1991, Tetrahydrobiopterin, a cofactor for rat cerebellar nitric oxide synthase, does not function as a reactant in the oxygenation of arginine, Proc. Natl. Acad. Sci. USA 88, 7091–7095.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., 1992, Reactive oxygen species and the central nervous system, J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Harteneck, C., B. Wedel, D. Koesling, J. Malkewitz, E. Böhme and G. Schultz, 1991, Molecular cloning and expression of a new alpha-subunit of soluble guanylyl cyclase - interchangeability of the alpha-subunits of the enzyme, FEBS Lett. 292, 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Heinzel, B., M. John, P. Klatt, E. Böhme and B. Mayer, 1992, Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase, Biochem. J. 281, 627–630.

    PubMed  CAS  Google Scholar 

  • Henry, Y., M. Lepoivre, J.-C. Drapier, C. Ducrocq, J.-L. Boucher and A. Guissani, 1993, EPR characterization of molecular targets for NO in mammalian cells and organelles, FASEB J. 7, 1124–1134.

    PubMed  CAS  Google Scholar 

  • Hevel, J.M. and M.A. Marietta, 1992, Macrophage nitric oxide synthase - relationship between enzyme-bound tetrahydrobiopterin and synthase activity, Biochemistry 31, 7160–7165.

    Article  PubMed  CAS  Google Scholar 

  • Hevel, J.M., K.A. White and M.A. Marietta, 1991, Purification of the inducible murine macrophage nitric oxide synthase - identification as a flavoprotein, J. Biol. Chem. 266, 22789–22791.

    PubMed  CAS  Google Scholar 

  • Hiki, K., R. Hattori, C. Kawai and Y. Yui, 1992, Purification of insoluble nitric oxide synthase from rat cerebellum, J. Biochem. 111, 556–558.

    PubMed  CAS  Google Scholar 

  • Hope, B., G. Michael, K. Knigge and S. Vincent, 1991, Neuronal NADPH diaphorase is a nitric oxide synthase, Proc. Natl. Acad. Sci. USA 88, 2811–2814.

    Article  PubMed  CAS  Google Scholar 

  • Humbert, P., F. Niroomand, G. Fischer, B. Mayer, D. Koesling, K.-D. Hinsch, H. Gausepohl, R. Frank, G. Schultz and E. Böhme, 1990, Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method, Eur. J. Biochem. 190, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., R.G. Harbison, K.S. Wood and P. Kadowitz, 1986, Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid, J. Pharmacol. Exp. Ther. 237, 893–900.

    PubMed  CAS  Google Scholar 

  • Ignarro, L.J., G.M. Buga, K.S. Wood, R.E. Byrns and G. Chaudhuri, 1987, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. USA 84, 9265– 9269.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto, J., N. Spurr, M. Liao, L. Lizhi, P. Emson and W.M. Xu, 1992, Localization of brain nitric oxide synthase (NOS) to human chromosome-12, Genomics 14, 802–804.

    Article  PubMed  CAS  Google Scholar 

  • Klatt, P., K. Schmidt and B. Mayer, 1992a, Brain nitric oxide synthase is a haemoprotein, Biochem. J. 288, 15–17.

    PubMed  CAS  Google Scholar 

  • Klatt, P., B. Heinzel, M. John, M. Kastner, E. Böhme and B. Mayer, 1992b, Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase, J. Biol. Chem. 267, 11374–11378.

    PubMed  CAS  Google Scholar 

  • Klatt, P., B. Heinzel, B. Mayer, E. Ambach, G. Werner-Felmayer, H. Wachter and E.R. Werner, 1992c, Stimulation of human nitric oxide synthase by tetrahydrobiopterin and selective binding of the cofactor, FEBS Lett. 305, 160–162.

    Article  PubMed  CAS  Google Scholar 

  • Klatt, P., K. Schmidt, G. Uray and B. Mayer, 1993, Multiple catalytic functions of brain nitric oxide synthase. Biochemical characterization, cofactor-requirement and role of NG-hydroxy-L-arginine as an intermediate, J. Biol. Chem. 268, 14781–14787.

    PubMed  CAS  Google Scholar 

  • Klatt, P., K. Schmidt, F. Brunner and B. Mayer, 1994a, Inhibitors of brain nitric oxide synthase. Binding kinetics, metabolism, and enzyme inactivation, J. Biol. Chem. 269, 1674–1680.

    PubMed  CAS  Google Scholar 

  • Klatt, P., M. Schmid, E. Leopold, K. Schmidt, E.R. Werner and B. Mayer, 1994b, The pteridine binding site of brain nitric oxide synthase. Kinetics of tetrahydrobiopterin binding, specificity, and allosteric interaction with the substrate domain, J. Biol. Chem. (in press).

    Google Scholar 

  • Knowles, R.G., M. Palacios, R.M.J. Palmer and S. Moncada, 1989, Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase, Proc. Natl. Acad. Sci. USA 86, 5159–5162.

    Article  PubMed  CAS  Google Scholar 

  • Koesling, D., E. Böhme and G. Schultz, 1991, Guanylyl cyclases, a growing family of signal transducing enzymes, FASEB J. 5, 2785–2791.

    PubMed  CAS  Google Scholar 

  • Kwon, N.S., C.F. Nathan and D.J. Stuehr, 1989, Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages, J. Biol. Chem. 264, 20496–20501.

    PubMed  CAS  Google Scholar 

  • Kwon, N.S., C.F. Nathan, C. Gilker, O.W. Griffith, D.E. Matthews and D.J. Stuehr, 1990, L-citrulline production from L-arginine by macrophage nitric oxide synthase. The ureido oxygen derives from dioxygen, J. Biol. Chem. 265, 13442–13445.

    PubMed  CAS  Google Scholar 

  • Kwon, N.S., D.J. Stuehr and C.F. Nathan, 1991, Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide, J. Exp. Med. 174, 761–767.

    Article  PubMed  CAS  Google Scholar 

  • Lamas, S., P.A. Marsden, G.K. Li, P. Tempst and T. Michel, 1992, Endothelial nitric oxide synthase - molecular cloning and characterization of a distinct constitutive enzyme isoform, Proc. Natl. Acad. Sci. USA 89, 6348–6352.

    Article  PubMed  CAS  Google Scholar 

  • Leone, A.M., R.M.J. Palmer, R.G. Knowles, P.L. Francis, D.S. Ashton and S. Moncada, 1991, Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline, J. Biol. Chem. 266, 23790–23795.

    PubMed  CAS  Google Scholar 

  • Lepoivre, M., F. Fieschi, J. Coves, L. Thelander and M. Fontecave, 1991, Inactivation of ribonucleotide reductase by nitric oxide, Biochem. Biophys. Res. Commun. 179, 442–448.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A., Y.B. Choi, Z.H. Pan, S.Z.Z. Lei, H.S.V. Chen, N.J. Sucher, J. Loscalzo, D.J. Singel and J.S. Stamler, 1993, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature 364, 626–632.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, C.R., G.J. Orloff and J.M. Cunningham, 1992, Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line, J. Biol. Chem. 267, 6370–6374.

    PubMed  CAS  Google Scholar 

  • Maines, M.D., J.A. Mark and J.F. Ewing, 1993, Heme oxygenase, a likely regulator of cGMP production in the brain - induction invivo of HO-1 compensates for depression in NO synthase activity, Mol. Cell. Neurosci. 4, 398–405.

    CAS  Google Scholar 

  • Marin, P., M. Lafoncazal and J. Bockaert, 1992, A nitric oxide synthase activity selectively stimulated by NMDA receptors depends on protein kinase-C activation in mouse striatal neurons, Eur. J. Neurosci. 4, 425–432.

    Article  PubMed  Google Scholar 

  • Marietta, M.A., P.S. Yoon, R. Iyengar, CD. Leaf and J.S. Wishnok, 1988, Macrophage oxidation of L- arginine to nitrite and nitrate: nitric oxide is an intermediate, Biochemistry 27, 8706–8711.

    Article  Google Scholar 

  • Marsden, P.A., K.T. Schappert, H.S. Chen, M. Flowers, C.L. Sundell, J.N. Wilcox, S. Lamas and T. Michel, 1992, Molecular cloning and characterization of human endothelial nitric oxide synthase, FEBS Lett. 307, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, B. and E. Böhme, 1989, Ca2+-dependent formation of an L-arginine-derived activator of soluble guanylyl cyclase in bovine lung, FEBS Lett. 256, 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, B., K. Schmidt, P. Humbert and E. Böhme, 1989, Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylyl cyclase, Biochem. Biophys. Res. Commun. 164, 678–685.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, B., M. John and E. Böhme, 1990, Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin, FEBS Lett. 277, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, B., M. John, B. Heinzel, E.R. Werner, H. Wachter, G. Schultz and E. Böhme, 1991, Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase, FEBS Lett. 288, 187– 191.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, B., P. Klatt, E. Böhme and K. Schmidt, 1992, Regulation of neuronal nitric oxide and cyclic GMP formation by Ca2+, J. Neurochem. 59, 2024–2029.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, B., D. Koesling and E. Böhme, 1993a, Characterization of nitric oxide synthase, soluble guanylyl cyclase, and Ca2+/calmodulin-stimulated cGMP phosphodiesterase as components of neuronal signal transduction, Adv. Second Messenger Phosphoprotein Res. 28, 111–119.

    PubMed  CAS  Google Scholar 

  • Mayer, B., M. Schmid, P. Klatt and K. Schmidt, 1993b, Reversible inactivation of endothelial nitric oxide synthase by NG-nitro-L-arginine, FEBS Lett. 333, 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, B., E.R. Werner, E. Leopold, P. Klatt and K. Schmidt, 1994, In “Biology of Nitric Oxide” (eds M. Feelisch, R. Busse, and S. Moncada), Portland Press, Colchester (in press).

    Google Scholar 

  • McMillan, K., D.S. Bredt, D.J. Hirsch, S.H. Snyder, J.E. Clark and B.S.S. Masters, 1992, Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide, Proc. Natl. Acad. Sci. USA 89, 11141–11145.

    Article  PubMed  CAS  Google Scholar 

  • Michel, T., G.K. Li and L. Busconi, 1993, Phosphorylation and subcellular translocation of endothelial nitric oxide synthase, Proc. Natl. Acad. Sci. USA 90, 6252–6256.

    Article  PubMed  CAS  Google Scholar 

  • Nakane, M., J. Mitchell, U. Förstermann and F. Murad, 1991, Phosphorylation by calcium calmodulin- dependent protein kinase-II and protein kinase-C modulates the activity of nitric oxide synthase, Biochem. Biophys. Res. Commun. 180, 1396–1402.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C.F. and J.B. Hibbs, 1991, Role of nitric oxide synthesis in macrophage antimicrobial activity, Curr. Opin. Immunol. 3, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T., D. Brunson, C.L. Crespi, B.W. Penman, J.S. Wishnok and S.R. Tannenbaum, 1992, DNA damage and mutation in human cells exposed to nitric oxide invitro, Proc. Natl. Acad. Sci. USA 89, 3030–3034.

    Article  PubMed  CAS  Google Scholar 

  • Nichol, C.A., G.K. Smith and D.S. Duch, 1985, Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin, Annu. Rev. Biochem. 54, 729–764.

    Article  PubMed  CAS  Google Scholar 

  • Olken, N.M. and M.A. Marietta, 1993, NG-Methyl-L-arginine functions as an alternate substrate and mechanism-based inhibitor of nitric oxide synthase, Biochemistry 32, 9677–9685.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, M., R.G. Knowles, R.M. Palmer and S. Moncada, 1989, Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands, Biochem. Biophys. Res. Commun. 165, 802–9.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R.M.J., D.S. Ashton and S. Moncada, 1988, Vascular endothelial cells synthesize nitric oxide from L- arginine, Nature 333, 664–666.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R.M.J., A.G. Ferrige and S. Moncada, 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327, 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Pollock, J.S., U. Förstermann, J.A. Mitchell, T.D. Warner, H.H.H.W. Schmidt, M. Nakane and F. Murad, 1991, Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells, Proc. Natl. Acad. Sci. USA 88, 10480–10484.

    Article  PubMed  CAS  Google Scholar 

  • Pou, S., W.S. Pou, D.S. Bredt, S.H. Snyder and G.M. Rosen, 1992, Generation of superoxide by purified brain nitric oxide synthase, J. Biol. Chem. 267, 24173–24176.

    PubMed  CAS  Google Scholar 

  • Radomski, M.W., R.M. Palmer and S. Moncada, 1990, An L-arginine/nitric oxide pathway present in human platelets regulates aggregation, Proc. Natl. Acad. Sci. USA 87, 5193–5197.

    Article  PubMed  CAS  Google Scholar 

  • Rengasamy, A. and R.A. Johns, 1991, Characterization of endothelium-derived relaxing factor/nitric oxide synthase from bovine cerebellum and mechanism of modulation by high and low oxygen tensions, J. Pharmacol. Exp. Ther. 259, 310–316.

    PubMed  CAS  Google Scholar 

  • Rengasamy, A. and R.A. Johns, 1993, Regulation of nitric oxide synthase by nitric oxide, Mol. Pharmacol. 44, 124–128.

    PubMed  CAS  Google Scholar 

  • Rogers, N.E. and L.J. Ignarro, 1992, Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine, Biochem. Biophys. Res. Commun. 189, 242–249.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum, W.I., G.H. Nelson and T. Shimizu, 1992, L-arginine suffusion restores response to acetylcholine in brain arterioles with damaged endothelium, Am. J. Physiol. 262, H961–H964.

    PubMed  CAS  Google Scholar 

  • Rossaint, R., K.J. Falke, F. Lopez, K. Slama, U. Pison and W.M. Zapol, 1993, Inhaled nitric oxide for the adult respiratory distress syndrome, New Engl. J. Med. 328, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Sakuma, I., D.J. Stuehr, S.S. Gross, C. Nathan and R. Levi, 1988, Identification of arginine as a precursor of endothelium-derived relaxing factor, Proc. Natl. Acad. Sci. USA 85, 8664–8667.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H.H.H.W., 1992, NO, CO and OH - endogenous soluble guanylyl cyclase-activating factors, FEBS Lett. 307, 102–107.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H.H.H.W., H. Nau, W. Wittfoht, J. Gerlach, K.-E. Prescher, M.M. Klein, F. Niroomand and E. Böhme, 1988, Arginine is a physiological precursor of endothelium-derived nitric oxide, Eur. J. Pharmacol. 154,213–216.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H.H.H.W. and F. Murad, 1991, Purification and characterization of a human NO synthase, Biochem. Biophys. Res. Commun. 181, 1372–1377.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H.H.H.W., J.S. Pollock, M. Nakane, L.D. Gorsky, U. Förstermann and F. Murad, 1991, Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase, Proc. Natl. Acad. Sci. USA 88, 365– 369.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H.H.H.W., R.M. Smith, M. Nakane and F. Murad, 1992a, Ca2+/calmodulin-dependent NO synthase type-I - A biopteroflavoprotein with Ca2+/calmodulin-independent diaphorase and reductase activities, Biochemistry 31, 3243–3249.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H.H.H.W., T.D. Warner, M. Nakane, U. Förstermann and F. Murad, 1992b, Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages, Mol. Pharmacol. 41, 615– 624.

    PubMed  CAS  Google Scholar 

  • Schmidt, H.H.H.W., S.M. Lohmann and U. Walter, 1993, The nitric oxide and cGMP signal transduction system - regulation and mechanism of action, Biochim. Biophys. Acta 1178, 153–175.

    Article  PubMed  CAS  Google Scholar 

  • Schott, C.A., G.A. Gray and J.C. Stoclet, 1993, Dependence of endotoxin-induced vascular hyporeactivity on extracellular L-arginine, Br. J. Pharmacol. 108, 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Sessa, W.C., J.K. Harrison, CM. Barber, D. Zeng, M.E. Durieux, D.D. Dangelo, K.R. Lynch and M.J. Peach, 1992, Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase, J. Biol. Chem. 267, 15274–15276.

    PubMed  CAS  Google Scholar 

  • Sessa, W.C., J.K. Harrison, D.R. Luthin, J.S. Pollock and K.R. Lynch, 1993, Genomic analysis and expression patterns reveal distinct genes for endothelial and brain nitric oxide synthase, Hypertension 21, 934–938.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr, D.J., H.J. Cho, N.S. Kwon, M.F. Weise and C.F. Nathan, 1991a, Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein, Proc. Natl. Acad. Sci. USA 88, 7773–7777.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr, D.J., N.S. Kwon, C.F. Nathan, O.W. Griffith, P.L. Feldman and J. Wiseman, 1991b, N omega- hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine, J. Biol. Chem. 266, 6259–6263.

    PubMed  CAS  Google Scholar 

  • Stuehr, D.J. and M. Ikeda-Saito, 1992, Spectral characterization of brain and macrophage nitric oxide synthases - cytochrome-P-450-like hemeproteins that contain a flavin semiquinone radical, J. Biol. Chem. 267, 20547–20550.

    PubMed  CAS  Google Scholar 

  • Tayeh, M.A. and M.A. Marietta, 1989, Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor, J. Biol. Chem. 264, 19654–19658.

    PubMed  CAS  Google Scholar 

  • Ujiie, K., J.G. Drewett, P.S.T. Yuen and R.A. Star, 1993, Differential expression of mRNA for guanylyl cyclase-linked endothelium-derived relaxing factor receptor subunits in rat kidney, J. Clin. Invest. 91, 730–734.

    Article  PubMed  CAS  Google Scholar 

  • Verma, A., D.J. Hirsch, C.E. Glatt, G.V. Ronnett and S.H. Snyder, 1993, Carbon monoxide - a putative neural messenger, Science 259, 381–384.

    Article  PubMed  CAS  Google Scholar 

  • Waldman, S. and F. Murad, 1987, Cyclic GMP synthesis and function, Pharmacol. Rev. 39, 163–195.

    PubMed  CAS  Google Scholar 

  • Walter, U., 1989, Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system, Rev. Physiol. Biochem. Pharmacol. 113, 42–88.

    Google Scholar 

  • Wedel, B., P. Humbert, C. Harteneck, J. Foerster, J. Malkewitz, E. Böhme, G. Schultz and D. Koesling, 1994, Mutation of His-105 of the bj-subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase, Proc. Natl. Acad. Sci. USA 91, 2592–2596.

    Article  PubMed  CAS  Google Scholar 

  • Werner, E.R., G. Werner-Felmayer and H. Wachter, 1993, Tetrahydrobiopterin and cytokines, Proc. Soc. Exp. Biol. Med. 203, 1–12.

    PubMed  CAS  Google Scholar 

  • White, K.A. and M.A. Marietta, 1992, Nitric oxide synthase is a cytochrome-P-450 type hemoprotein, Biochemistry 31, 6627–6631.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., K.S. Kasprzak, C.M. Maragos, R.K. Elespuru, M. Misra, T.M. Dunams, T.A. Cebula, W.H. Koch, A.W. Andrews, J.S. Allen and L.K. Keefer, 1991, DNA deaminating ability and genotoxicity of nitric oxide and its progenitors, Science 254, 1001–1003.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Y. Osawa, J.F. Darbyshire, C.R. Jones, S.C. Eshenaur and R.W. Nims, 1993, Inhibition of cytochromes-P450 by nitric oxide and a nitric oxide-releasing agent, Arch. Biochem. Biophys. 300, 115– 123.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, G., S. Würdig and G. Schunzel, 1992, Nitric oxide synthase in rat brain is predominantly located at neuronal endoplasmic reticulum - an electron microscopic demonstration of NADPH- diaphorase activity, Neurosci. Lett. 147, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z., R.K. Sharma and J.H. Wang, 1992, Catalytic and regulatory properties of calmodulin-stimulated phosphodiesterase isozymes, Adv. Second Messenger Phosphoprotein Res. 25, 29–43.

    PubMed  CAS  Google Scholar 

  • Xie, Q.W., H.J. Cho, J. Calaycay, R.A. Mumford, K.M. Swiderek, T.D. Lee, A.H. Ding, T. Troso and C. Nathan, 1992, Cloning and characterization of inducible nitric oxide synthase from mouse macrophages, Science 256, 225–228.

    Article  PubMed  CAS  Google Scholar 

  • Yuen, P.S.T., L.R. Potter and D.L. Garbers, 1990, A new form of guanylyl cyclase is preferentially expressed in rat kidney, Biochemistry 29, 10872–10878.

    Article  PubMed  CAS  Google Scholar 

  • Yui, Y., R. Hattori, K. Kosuga, H. Eizawa, K. Hiki and C. Kawai, 1991, Purification of nitric oxide synthase from rat macrophages, J. Biol. Chem. 266, 12544–12547.

    PubMed  CAS  Google Scholar 

  • Zhuo, M., S.A. Small, E.R. Kandel and R.D. Hawkins, 1993, Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus, Science 260, 1946–1950.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mayer, B. (1995). Biosynthesis of Nitric Oxide. In: Weissman, B.A., Allon, N., Shapira, S. (eds) Biochemical, Pharmacological, and Clinical Aspects of Nitric Oxide. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1903-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1903-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5777-3

  • Online ISBN: 978-1-4615-1903-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics