Skip to main content

Nitric Oxide Synthase Inhibitors: Mechanism of Action and in Vivo Studies

  • Chapter
Biochemical, Pharmacological, and Clinical Aspects of Nitric Oxide

Abstract

Nitric oxide synthase (NOS) catalyzes the NADPH- and O2-dependent oxidation of Larginine to citrulline and nitric oxide (NO) (1,2). At least three distinct isoforms of NOS occur in mammals including a brain isoform (bNOS) that produces NO having a poorly defined role in neurotransmission (3,4), an isoform in vascular endothelial cells (eNOS) that produces NO having a vasodilatory role in normal blood pressure homeostasis (5,7), and an inducible isoform (iNOS) that is expressed in many tissues in response to lipopolysaccharide (LPS) and various cytokines (e.g. tumor necrosis factor (TNF), interleukin-1 (IL-1), interleukin-2 (IL-2) (8). Although iNOS has a physiological role in the control of intracellular pathogens including viruses (9) and may play a role in the cytostatic/cytotoxic reaction of macrophages to tumor cells (10,11), overproduction of NO by iNOS expressed in vascular smooth muscle (VSM) and endothelial cells has been shown to be a major hypotensive mediator in septic and cytokine-induced shock (7,12–15). Recent evidence also suggests iNOS-derived NO accounts in part for the tissue damage seen in inflammatory disorders including arthritis (16–18). Elucidation of these potentially pathological roles of iNOS and speculation that bNOS has a role in the post-ischemic damage of stroke (4) has stimulated efforts to selectively inhibit the NOS isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.J. Stuehr and O.W. Griffith, Mammalian nitric oxide synthases, Adv. Enzymol. Relat. Areas Mol.Biol. 65 : 287 (1992).

    PubMed  CAS  Google Scholar 

  2. M.A. Marietta, Nitric oxide synthase structure and mechanism, J. Biol. Chem. 268 : 12231 (1993).

    Google Scholar 

  3. K.L. Crossin, Nitric oxide (NO):a versatile second messenger in brain, Trend. Pharmacol. Sci. 16:(1991).

    Google Scholar 

  4. S.H. Snyder and D.S. Bredt, Nitric oxide as a neuronal messenger, Trend. Pharmacol. Sci. 12 : 125 (1991).

    Article  CAS  Google Scholar 

  5. K. Aisaka, S.S. Gross, O.W. Griffith and R. Levi, NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig:does nitric oxide regulate blood pressure in vivo? Biochem. Biophys. Res. Commun. 160 : 881 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. D.D. Rees, R.M.J. Palmer and S. Moncada, Role of endothelium-derived nitric oxide in the regulation of blood pressure, Proc. Natl. Acad. Sci. 86 : 3375 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. S. Moncada and A. Higgs, The L-arginine nitric oxide pathway, New. Eng. J. Med. 329 : 2002 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. C.F. Nathan and J.B. Hibbs, Jr., Role of nitric oxide synthesis in macrophage antimicrobial activity,Curr. Opinion Immunol. 3 : 65 (1991).

    Article  CAS  Google Scholar 

  9. G. Karupiah, Q.W. Xie, R.M. Buller, C. Nathan, C. Duarte and J.D. MacMicking, Inhibition of viral replication by interferon-7-induced nitric oxide synthase, 261 : 1445 (1993).

    Google Scholar 

  10. J.B. Hibbs, Jr., Z. Vavrin and R.R. Taintor, L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells, J. Immunol. 138 : 550 (1987).

    PubMed  CAS  Google Scholar 

  11. D.J. Stuehr and C.F. Nathan, Nitric oxide, a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells, J. Exp. Med. 169 : 1543 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. R.G. Kilbourn, S.S. Gross, A. Jubran, J. Adams, O.W. Griffith, R. Levi and R.F. Lodato, NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension:implications for the involvement of nitric oxide, Proc. Nad. Acad. Sci. U.S.A. 87 : 3629 (1990).

    Article  CAS  Google Scholar 

  13. R.G. Kilbourn, S.S. Gross, R.F. Lodato, J. Adams, R. Levi, L.L. Miller, L.B. Lachman and Griffith,O.W., Inhibition of interleukin-1-α-induced nitric oxide synthase in vascular smooth muscle and full reversal of interleukin-1-α-induced hypotension by N omega-amino-L-arginine, J. Natl. Cancer Inst. 84 : 1008 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. R.G. Kilbourn, A. Jubran, S.S. Gross, O.W. Griffith, R. Levi, J. Adams and R.F. Lodato, Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis, Biochem. Biophys. Res. Commun. 172 : 1132 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. R.G. Kilbourn and O.W. Griffith, Overproduction of nitric oxide in cytokine-mediated and septic shock, J. Natl. Cancer Inst. 84 : 827 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. F.N. McCartney, J.B. Allen, D.E. Mizel, J.E. Albina, Q.W. Xie, C.F. Nathan and S.M. Wahl,Suppression of arthritis by an inhibitor of nitric oxide synthase, J. Exp. Med. 178 : 749 (1993).

    Article  Google Scholar 

  17. J.B. Weinberg, D.L. Granger, D.S. Pisetsky, M.F. Seldin, M.A. Misukonis, S.N. Mason, A.M.Pippen,P. Ruiz, E.R. Wood and G.S. Gilkeson, The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease:Increased nitric oxide production and nitric oxide synthase expression in MRL-l pr/l pr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine, J. Exp. Med. 179 : 651 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. M. Stefanovic-Racic, J. Stadler and C.H. Evans, Nitric Oxide and Arthritis, Arthritis Rheum. 36 : 1036 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. C. Nathan and Q.W. Xie, Regulation of biosynthesis of nitric oxide, J. Biol. Chem. 269 : 13725 (1994).

    PubMed  CAS  Google Scholar 

  20. W.C. Sessa, The nitric oxide synthase family of protein, J. Vasc. Res. 31 : 131 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. E.A. Sheta, K. McMillan and B.S. Masters, Evidence for a biodomain structure of constitutive cerebeller nitric oxide synthase, J. Biol. Chem. 269 : 15147 (1994).

    PubMed  CAS  Google Scholar 

  22. D.J. Stuehr, N.S. Kwon, C.F. nathan. O.W. Griffith, P.L. Feldman and J. Wiseman, Nω-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine, J. Biol. Chem. 266 : 6259 (1991).

    PubMed  CAS  Google Scholar 

  23. C. Natanson, W.D. Hoffman, A.F. Suffredini, P.Q. Eichacker and R.L. Danner, Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis, Ann. Intern. Med. 120 : 771 (1994).

    PubMed  CAS  Google Scholar 

  24. J.E. Parrillo, Pathogenetic mechanisms of septic shock, New. Eng. J. Med. 328 : 1471 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. R.G. Kilbourn and P. Belloni, Endothelial cell production of nitrogen oxides in response to interferon γ in combination with tumor necrosis factor, interleukin-1 or endotoxin, J. Natl. Cancer Inst. 82 : 772 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. D. Beasley and M. Eldridge, Interleuken-1 β and tumor necrosis factor-α synergistically induce NO synthase in rat vascular smooth muscle cells, Amer. J. Physiol. 266 : R1197 (1994).

    PubMed  CAS  Google Scholar 

  27. S.S. Gross, R. Levi, A. Madera, K.H. Park, J. Vance and Y. Hattori, Tetrahydrobiopterin synthesis is induced by LPS in vascular smooth muscle and is rate-limiting for nitric oxide production, Adv. Exp. Med. Biol. 338 : 295 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Hattori, E.B. Campbell and S.S. Gross, Argininosuccinatc synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis, J. Biol. Chem. 269 : 9405 (1994).

    PubMed  CAS  Google Scholar 

  29. A.K. Nussler, T.R. Billiar, Z.Z. Lui, and S.M. Morris, Jr., Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production, J. Biol. Chem. 269 : 1257 (1994).

    PubMed  CAS  Google Scholar 

  30. O.W. Griffith, K.H. Park, R. Levi and S. Gross, The role of plasma arginine in nitric oxide synthesis : studies with arginase-treated guinea pigs and rats, in:“The Biology of Nitric Oxide (1) Physiological and Clinical Aspects,” S. Moncada, ed., Portland Press, London (1992).

    Google Scholar 

  31. D. Paya, G.A. Gray and J.C. Stoclet, Effects of methylene blue on blood pressure and reactivity to norepinephrine in endotoxemic rats, J. Cardiovas. Pharm. 21 : 926 (1993).

    Article  CAS  Google Scholar 

  32. J.F. Keaney, Jr., J.C. Puyana, S. Francis, J.F. Loscalzo and J.S. Stamler, Methylene blue reverses endotoxin-induced hypotension, Circ. Res. 74 : 1121 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. R.G. Kilbourn, G. Joly, B. Cashon, J. DeAngelo and J. Bonaventura, Cell-free hemoglobin reverses the endotoxin-mediated hyporesponsivity of rat aortic rings to α-adrenergic agents, Biochem. Biophsy. Res. Commun. 199 : 155 (1994).

    Article  CAS  Google Scholar 

  34. S.S. Gross, D.J. Stuehr, K. Aisaka, E.A. Jaffe, R. Levi and O.W. Griffith, Macrophage and endothelial cell nitric oxide synthesis:cell-type selective inhibition by NG-methylarginine, Biochem. Biophys. Res. Commun. 170 : 96 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. L.E. Lambert, J.P. Whitten, B.M. Baron, H.C. Cheng, N.S. Doherty and LA. McDonald, Nitric oxide synthesis in the CNS, endothelium and macrophages differs in its sensitivity to inhibition by arginine analogues, Life Sci. 48 : 69 (1991).

    Article  PubMed  CAS  Google Scholar 

  36. P.L. Feldman, O.W. Griffith, H. Hong and D.J. Stuehr, Irreversible inactivation of macrophage and brain nitric oxide synthase by L-NG-methylarginine requires NADPH-dependent hydroxylation, J. Med. Chem. 36 : 491 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. N.M. Olken, K.M. Rusche, M.K. Richards and M.A. Marietta, Inactivation of macrophage nitric oxide synthase activity by NG-methyl-L-arginine, Biochem. Biophys. Res. Commun. 177 : 828 (1991).

    Article  PubMed  CAS  Google Scholar 

  38. N.M. Olken and M.A. Marietta, NG -methyl-arginine functions as an alternate substrate and mechanism-based inhibitor of nitric oxide synthase, Biochem. 32 : 9677 (1993).

    Article  CAS  Google Scholar 

  39. O. Fasehun, S. Gross, E. Pipili, E. Jaffe, O.W. Griffith and R. Levi, NG -substituted arginine analogs : structure-activity relationship for inhibition of nitric oxide biosynthesis in vascular rings and endothelial cells, FASEB J. 4 : A309 (1991).

    Google Scholar 

  40. T.B. McCall, M. Feelisch, R.M.J. Palmer and S. Moncada, Identification of N-iminoethyl-L-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells, Br. J. Pharmacol. 102 : 234 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. K. Narayanan and O.W. Griffith, Synthesis of L-thiocitrulline, L-homothiocitrulline, and S-methyl-L-thiocitrulline:a new class of potent nitric oxide synthase inhibitors, J. Med. Chem. 37 : 885 (1994).

    Article  PubMed  CAS  Google Scholar 

  42. K. Narayanan, C. Frey and O.W. Griffith, Inhibitors of nitric oxide synthase:structural constraints on binding and mechanisms of action, in:“Third International Meeting on The Biology of Nitric Oxide,” S. Moncada and E.A. Higgs, ed., Elsevier Science Publishers, Amsterdam (In Press).

    Google Scholar 

  43. C. Frey, K. Narayanan, K. McMillan, L. Spack, S.S. Gross, B.S. Masters and O.W. Griffith, L-Thiocitrulline:a stereospecific, heme-binding inhibitor of nitric oxide synthases, J. Biol. Chem. (1994) in press.

    Google Scholar 

  44. K. Narayanan, L. Spack, M. Hayward and O.W. Griffith, S-methyl-L-thiocitrulline:a potent inhibitor of nitric oxide synthase with strong pressor activity in vivo, FASEB J. 8 : A360 (1994).

    Google Scholar 

  45. R.F. Furchgott and J.V. Zawadski, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetycholine, Nature, 288 : 373 (1980).

    Article  PubMed  CAS  Google Scholar 

  46. K. Aisaka, S.S. Gross, O.W. Griffith and R. Levi, L-arginine availability determines the duration of acetylcholine-induced systemic vasodilation in vivo, Biochem. Biophys. Res. Commun. 163 : 710 (1989).

    Article  PubMed  CAS  Google Scholar 

  47. G.M. Burg, M.E. Gold, J.M. Fukuto and L.J. Ignarro, Shear stress-induced release of nitric oxide from endothelial cells grown on beads, Hypotension 17 : 187 (1991).

    Google Scholar 

  48. R.G. Kilbourn and P. Belloni, Endothelial cells produce nitrogen oxides in response to interferon-7,tumour necrosis factor and endotoxin, in:“Nitric Oxide from L-Arginine:A Bioregulatory System,” S. Moncada and E.A. Higgs, ed., Elsevier Science Publishers, Amsterdam (1990).

    Google Scholar 

  49. R.G. Kilbourn, Antagonsim of tumour necrosis factor-induced hypotension by NG-monomethyl-L-arginine, in:“Nitric Oxide from L-Arginine:A Bioregulatory System,” S. Moncada and E.A. Higgs, ed., Elsevier Science Piblishers, Amsterdam (1990).

    Google Scholar 

  50. R.G. Kilbourn, L. Owen-Schaub, S.S. Gross, O.W. Griffith and C. Logothetis, Interleukin-2-mediated hypotension in the awake dog is reversed by inhibitors of nitric oxide formation, in:“The Biology of Nitric Oxide,” S. Moncada, M.A. Marietta, J.B. Higgs, Jr. and E.A. Higgs, ed., Portland Press, London and Chapel Hill (1992).

    Google Scholar 

  51. I. Fleming, G.A. Gray, G. Julou-Schaeffer, J.R. Parralt and J.C. Stoclet, Incubation with endotoxin activates the L-arginine pathway in vascular tissue, Biochem. Biophys. Res. Commun. 171 : 562 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. S.M. Hollenberg, R.E. Cunnion and J. Zimmerberg, Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats, Am. J. Physiol. 264 : H660 (1993).

    PubMed  CAS  Google Scholar 

  53. M.A. Dwyer, D.S. Bredt and S.H. Snyder, Nitric oxide synthase:irreversible inhibition by L-NG- nitroarginine in brain in vitro and in vivo, Biochem. Biophys. Res. Commun. 176 : 1136 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. J.M. Fukuto, K.S. Wood, R.E. Byrns and L.J. Ignarro, NG-amino-L-arginine:a new potent antagonist of L-arginine-mediated endothelium-dependent relaxation, Biochem. Biophys. Res. Commun. 168 : 458 (1990).

    Article  PubMed  CAS  Google Scholar 

  55. J.P. Cobb, C. Natanson, W.D. Hoffman, R.F. Lodato, S. Banks, C.A. Koev, M.A. Solomon, R.J. Elin,J.M. Hosseini and R.L. Danner, Nω-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin, J. Exp. Med. 176 : 1175 (1992).

    Article  PubMed  CAS  Google Scholar 

  56. O.W. Griffith, R.D. Allison, R. Rouhani, M. Handlogten and M.S. Kilberg, Specificity of the system y+transporter for arginine analogs:transplant of nitric oxide synthase inhibitors, FASEB J. 6 : A1255 (1992).

    Google Scholar 

  57. K. Schmidt, P. Klatt and B. Mayer, Characterization of endothelial cell amino acid transport systems involved in the actions of nitric oxide synthase, Mol. Pharm. 44 : 615 (1993).

    CAS  Google Scholar 

  58. E. Nava, R.M.J. Palmer and S. Moncada, The role of nitric oxide in endotoxic shock:effects of NG-monomethyl-L-argininc, J. Cardiovasc. Pharm. 20 : S 132 (1992).

    Article  CAS  Google Scholar 

  59. C.E. Wright, D.D. Rees and S. Moncada, Protective and pathological roles of nitric oxide in endotoxin shock, Cardiovasc. Res. 26 : 48 (1992).

    Article  PubMed  CAS  Google Scholar 

  60. T.R. Billiar, R.D. Curran, B.G. Harbrecht, D.J. Stuehr, A.J. Demetris and R.L. Simmons, Modulation of nitrogen oxide synthesis in vivo:NG-monomethyl-L-arginine inhibits endotoxin-induced nitrite/nitrate biosynthesis while promoting hepatie damage, J. Leukoc.Biol. 48 : 565 (1990).

    PubMed  CAS  Google Scholar 

  61. R.C. Bone, The pathogenesis of sepsis, Ann. Int. Med. 115 : 457 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffith, O.W. (1995). Nitric Oxide Synthase Inhibitors: Mechanism of Action and in Vivo Studies. In: Weissman, B.A., Allon, N., Shapira, S. (eds) Biochemical, Pharmacological, and Clinical Aspects of Nitric Oxide. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1903-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1903-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5777-3

  • Online ISBN: 978-1-4615-1903-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics