Skip to main content

The Involvement of L-Arginine-Nitric Oxide Pathway in the Anti-Rickettsial Activity of Macrophagelike Cells

  • Chapter
Biochemical, Pharmacological, and Clinical Aspects of Nitric Oxide

Abstract

Rickettsia conorii is an obligate, intracellular, gram-negative bacterium which causes Mediterranean spotted-fever. The encounter between rickettsia and macrophage can result either in the destruction of the cell due to rickettsial intracellular multiplication or in the destruction of the invasing bacterium. The anti-rickettsial activity of the macrophage can be stimulated in two modes. The first, by treating the macrophages with cytokines such as γ-interferon (γ-IFN). The other, destruction of rickettsiae within the macrophage cell can be facilitated by treating the rickettsiae with specific-antibodies prior to their engulfment by the macrophage (Winkler and Turco, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Drapier, J.-C., and Hibbs, J.B, Jr. 1986. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. J. Clin. Invest. 78:790–797.

    Article  PubMed  CAS  Google Scholar 

  • Drapier, J.-C., and Hibbs, J.B., Jr. 1988. Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J. Immunol. 140:2829–2838.

    PubMed  CAS  Google Scholar 

  • Fortier, A.H., Polsinelli, T., Green, S.J., and Nacy, C.A. 1992. Activation of macrophages for destruction of Francisella tularensis: Identification of cytokines, effector cells, and effector molecules. Infect. Immun. 60:817–825.

    PubMed  CAS  Google Scholar 

  • Green, L.C., Wagner, D.C., Glogowski, J., Skipper, P.L., Wishnok, J.S. and R. Tannenbaum, S.R. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126:131– 138.

    Article  PubMed  CAS  Google Scholar 

  • Jerrells, T.R., Turco, J., Winkler, H.H., and Spitalny, G.L. 1986. Neutraliztion of lymphokines-mediated antirickettsial activity of fibroblasts and macrophages with monoclonal antibody specific for murine interferon gamma. Infect. Immun. 51:355–359.

    PubMed  CAS  Google Scholar 

  • Jian, Y.L. and Cadee, K. 1992. Macrophage cytotoxicity against Entamoeba histolytica trophozoites is mediated by nitric oxide from L-arginine. J. Immunol. 148:3999–4005.

    Google Scholar 

  • Keysary A., McCaul T.F., and Winkler H.H. 1988. Roles of the Fc receptor and respiratory burst in killing of Rickettsia prowazekii by macrophagelike cell lines. Infect. Immun. 57:2390–2396.

    Google Scholar 

  • Krohenbuhl, J.E. 1980. Effects of activated macrophages on tumor target cells in discrete phases of the cell cycle. Cancer Res. 40:4622–4627.

    Google Scholar 

  • Lane, T.E., Wu-Hsieh, B.A., and Howard, D.H. 1991. Iron limitation and the gamma interferon-mediated antihistoplasma state of murine macrophages. Infect. Immun. 59:2274–2278.

    PubMed  CAS  Google Scholar 

  • Li, H., Jerrells, T.R., Spitalny, G.L. and Dieffenbach, C.W. 1987. Gamma interferon as a crucial host defense against Rickettsia conorii in vivo. Infect. Immunol. 55:1252–1255.

    CAS  Google Scholar 

  • Park, J. and Rikihisa, Y. 1992. L-Arginine-dependent killing of intracellular Ehrlichia risticii by macrophages treated with gamma interferon. Infect. Immun. 60:3504–3508.

    PubMed  CAS  Google Scholar 

  • Shawn, J.G., Meltzer, M.S., Hibbs, J.B Jr. and Nacy, C.A. 1990. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J. Immunol. 144:278–283.

    Google Scholar 

  • Summersgill, J.T., Powell, L.A., Buster, B.L., Miller, R.D. and Ramirez, J.A.. 1992. Killing of Legionella pneumophila by nitric oxide in interferon-activated macrophages. J. Leukoc. Biol. 52:625–629.

    PubMed  CAS  Google Scholar 

  • Winkler, H.H., and Turco, J. 1993. Rickettsiae and Macrophages, in: “Macrophage-Pathogen Interactions,” B.S. Zwilling, and T.K. Einstein, eds., Marcel Dekker, Inc. New-York. pp:401–414.

    Google Scholar 

  • Wisseman, C.L., Jr., Waddel, A.D., and Walsh, W.T. 1974. Mechanisms of Immunity in typhus infections. IV. Failure of chicken embryo cells in culture to restrict growth of antibody-sensityzed Rickettsia prowazekii. Infect. Immun. 9:571–575.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keysary, A., Oron, C., Rosner, M., Weissman, B.A. (1995). The Involvement of L-Arginine-Nitric Oxide Pathway in the Anti-Rickettsial Activity of Macrophagelike Cells. In: Weissman, B.A., Allon, N., Shapira, S. (eds) Biochemical, Pharmacological, and Clinical Aspects of Nitric Oxide. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1903-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1903-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5777-3

  • Online ISBN: 978-1-4615-1903-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics