Skip to main content

Abstract

The nitric oxide-cyclic GMP signal transduction system has emerged in recent years as a very ubiquitous pathway for intracellular and intercellular communication. This review is intended to describe and summarize some of our observations and those of other laboratories that have helped lead us and others to our present understanding of the nitric oxide-cyclic GMP signal transduction system. Readers are also referred to some of our earlier reviews for references and information1–6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Murad. Cyclic guanosine monophosphate as a mediator of vasodilation, J. Clin. Invest. 78:1–5 (1986).

    Article  PubMed  CAS  Google Scholar 

  2. F. Murad. Modulation of the guanylate eyclase-cGMP system by vasodilators and the role of free radicals as second messengers, in: Vascular Endothelium, J.D. Catravas, CM. Gillis, and U.S. Ryan, eds., Plenum Publishers, (1989).

    Google Scholar 

  3. F. Murad. Mechanisms for hormonal regulation of the different isoforms of guanylate cyclase, in:Molecular Mechanisms of Hormone Action. Y. Gehring, E. Helmreich, and G. Schultz, eds., Springer-Verlag, Heidelberg, (1989).

    Google Scholar 

  4. F. Murad, D. Leitman, S. Waldman, C.H. Chang, J. Hirata, K. Kohse, Effects of nitrovasodilators,,endothelium-dependent vasodilators and atrial peptides on cGMP, Proc. Cold Spring Harbor Symposium on Quantitative Biology, Signal Transduction 53:1005–1009 (1988).

    Article  CAS  Google Scholar 

  5. F. Murad, K. Ishii, L. Gorsky, U. Forstermann, J.F. Kerwin, and M. Heller, Endothelium-derived relaxing factor is a ubiquitous intracellular second messenger and extracellular paracrine substance for cyclic GMP synthesis, in: Nitric Oxide from L-Arginine: A Bioregulatory System. S. Moncada and E.A. Higgs, eds., Chapter 32, pp 301–315, London (1990).

    Google Scholar 

  6. S.A. Waldman and F. Murad, Cyclic GMP synthesis and function, Pharm. Rev. 39:163–196 (1987).

    PubMed  CAS  Google Scholar 

  7. H. Kimura and F. Murad, Evidence for two different forms of guanylate cyclase in rat heart, J. Biol.Chem, 249:6910–6919 (1974).

    PubMed  CAS  Google Scholar 

  8. H. Kimura and F. Murad, Two forms of guanylate cyclase in mammalian tissues and possible mechanisms for their regulation, Metab. Clin. Exp., 24:439–445, (1975).

    Article  PubMed  CAS  Google Scholar 

  9. H. Kimura and F. Murad, Localization of particulate guanylate cyclase in plasma membranes and microsomes of rat liver, J. Biol. Chem., 250:4810–4817, (1975).

    PubMed  CAS  Google Scholar 

  10. H. Kimura and F. Murad, Increased particulate and decreased soluble guanylate cyclase activity in regenerating liver, fetal liver, and hepatoma, Proc. Natl. Acad. Sci., USA, 72:1965–1969, (1975).

    Article  PubMed  CAS  Google Scholar 

  11. H. Kimura, C.K. Mittal, and F. Murad, Activation of guanylate cyclase from rat liver and other tissues with sodium azide, J. Biol. Chem. 250:8016–8022 (1975).

    PubMed  CAS  Google Scholar 

  12. H. Kimura, C.K. Mittal, and F. Murad, Increases in cyclic GMP levels in brain and liver with sodium azide, an activator of guanylate cyclase, Nature 257:700–702 (1975).

    Article  PubMed  CAS  Google Scholar 

  13. F. Murad, K. Ishii, U. Forstermann, L. Gorsky, J. Kerwin, J. Pollock, and M. Heller, EDRF is an intracellular second messenger and autacoid to regulate cyclic GMP synthesis in many cells, Adv. Cyclic Nucl. Res. 24:441–448 (1990).

    CAS  Google Scholar 

  14. C.K. Mittal, H. Kimura, and F. Murad, Requirement for a macromolecular factor for sodium azide activation of guanylate cyclase. J. Cyclic Nucleotide Res., 1:261–269, (1975).

    PubMed  CAS  Google Scholar 

  15. C.K. Mittal, H. Kimura, and F. Murad, Purification and properties of a protein required for sodium azide activation of guanylate cyclase, J. Biol. Chem., 252:4348–4390, (1977).

    Google Scholar 

  16. C.K. Mittal, W.P. Arnold, and F. Murad, Characterization of protein inhibitors of guanylate cyclase activation from rat heart and bovine lung, J. Biol. Chem., 253:1266–1271, ( 1978).

    PubMed  CAS  Google Scholar 

  17. S. Katsuki, W.P. Arnold, C.K. Mittal, and F. Murad, Stimulation of formation and accumulation of cyclic GMP by smooth muscle relaxing agents, Proc. Jpn. Cyclic Nucleotide Conf., pp. 44–50, (1977).

    Google Scholar 

  18. S. Katsuki, W.P. Arnold, and F. Murad, Effect of sodium nitroprusside, nitroglycerin and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues, J. Cyclic Nucl. Res. 3:239–247 (1977).

    CAS  Google Scholar 

  19. S. Katsuki, W. Arnold, C.K. Mittal, and F. Murad, Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine, J. Cyclic Nucl. Res. 3:23–35 (1977).

    CAS  Google Scholar 

  20. W.P. Arnold, C.K. Mittal, S. Katsuki, and F. Murad, Nitric oxide activates guanylate cyclase and increases guanosine 3’5’-monophosphate levels in various tissue preparations, Proc. Natl. Acad. Sci. USA 74:3203–3207(1977).

    Article  PubMed  CAS  Google Scholar 

  21. J.M.. Braughler, C.K. Mittal, and F. Murad, Purification of soluble guanylate cyclase from rat liver,Proc. Natl. Acad. Sci., USA, 76:219–222, (1979).

    Article  PubMed  CAS  Google Scholar 

  22. J.M.. Braughler, C.K. Mittal, and F. Murad, Effects of thiols, sugars and proteins on nitric oxide activation of guanylate cyclase, J. Biol. Chem. 254:12450–12454 (1979).

    PubMed  CAS  Google Scholar 

  23. F. Murad, C.K. Mittal, W.P. Arnold, S. Katsuki, and H. Kimura, Guanylate cyclase: Activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and yoglobin, Adv. Cyclic Nucl. Res. 9:145–158 (1978).

    CAS  Google Scholar 

  24. R. Gerzer, E. Bohme, F. Hoffman, and G. Schultz, Soluble guanylate cyclase purified from bovine lung contains heme and copper, FEBS. Lett., 132:71–74, (1981).

    Article  PubMed  CAS  Google Scholar 

  25. L.J. Ignarro, J. Adams, P. Horwitz, and K.S. Wood, Activation of soluble cyclase by NO-hemeproteins involves NO-heme exchange: Comparison of heme containing and heme deficient enzymes, J. Bio. Chem., 261:4997–5002, (1986).

    CAS  Google Scholar 

  26. H.J. Brandwein, J.A. Lewicki, and F. Murad, Reversible inactivation of guanylate cyclase by mixed disulfide formation, J. Biol. Chem., 256:2958–2962, (1981).

    PubMed  CAS  Google Scholar 

  27. S.A. Waldman, J.A. Lewicki, H.J. Brandwein, and F. Murad, Partial purification and characterization of particulate guanylate cyclase from rat liver after solubilization with trypsin, J. Cyclic Nuc. Res. 8:359–370 (1982).

    CAS  Google Scholar 

  28. Y. Horio and F. Murad, Solubilization of guanylate cyclase from bovine rod outer segments and effects ofCa++ and nitro compounds, J. Biol. Chem., 266:3411–3415, (1991).

    PubMed  CAS  Google Scholar 

  29. H. Kimura, C.K. Mittal, and F. Murad, Appearance of magnesium guanylate cyclase activity in rat liver with sodium-azide activation, J. Biol. Chem., 251:7769–7773, (1976).

    PubMed  CAS  Google Scholar 

  30. C.K. Mittal, J.M. Braughler, K. Ichihara, and F. Murad, Synthesis of adenosine 3’,5’-monophosphate by guanylate cyclase, a new pathway for its formation, Biochim. Biophys. Acta, 585:333–342, (1979).

    Article  PubMed  CAS  Google Scholar 

  31. R.M. Rapoport, M.B. Draznin, and F. Murad, Endothelium-dependent vasodilator and nitrovasodilator-induccd relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phosphorylation, Trans. Assoc. Am. Physicians, 96:19–30, (1983).

    PubMed  CAS  Google Scholar 

  32. R.M. Rapoport and F. Murad, Agonist-induced endothelial-dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP, Circ. Res. 52:352–357 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. M. Hirata, K. Kohse, C.H. Chang, T. Ikcbe, and F. Murad, Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells, J. Biol. Chem. 265:1268–1273 (1990).

    PubMed  CAS  Google Scholar 

  34. R.F. Furchgott and J.V. Zawadski, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle to acetylcholine, Nature 288:373–376 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. R.M. Rapoport and F. Murad, Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: Role for cyclic GMP, J. Cyclic Nucl. and Protein Phosphor. Res. 9:281–296(1983).

    CAS  Google Scholar 

  36. R.M. Rapoport, M.D. Draznin, and F. Murad, Endothelium-dependent vasodilator-and-nitrovasodilator-induced relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phosphorylation, Trans. Assoc. Amer. Phys. 96:19–30 (1983).

    CAS  Google Scholar 

  37. L.J. Ignarro, G.M. Buga, K.S. Wood, R.E. Byrns, and G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. 84:9265–9269 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. R.F. Furchgott. Studies on relaxation of rabbit aorta by sodium nitrite: The basis for the proposal that acid-activatable inhibitory factor from bovine retractor penis is organic nitrite and EDRF is nitric oxide, in: “Vasodilation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium”. P.M. Vanhoutte, ed., Raven Press, New York (1988).

    Google Scholar 

  39. T. DeGuchi and M.H. Yoshioko, L-Arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells, J. Biol. Chem. 257:10147–10151 (1982).

    PubMed  CAS  Google Scholar 

  40. J.R. Hibbs, R.R. Taintor, and Z. Varrin, Macrophage cytotoxicity: Role for A-arginine deiminase and amino nitrogen oxidation to nitrite, Science 235:473–476 (1987).

    Article  PubMed  CAS  Google Scholar 

  41. R. Palmer, D. Ashton, and S. Moncada, Vascular endothelial cells synthesize nitric oxide from L-arginine, Nature 333:664–665 (1988).

    Article  PubMed  CAS  Google Scholar 

  42. K. Ishii, L. Gorsky, U. Forstermann, and F. Murad, Endothelium-derived relaxing factor (EDRF):The endogenous activator of soluble guanylate cyclase in various types of cells, J. Applied Cardiology 4:505–512 (1989).

    Google Scholar 

  43. J.S. Pollock, V. Klinghofer, U. Forstermann, and F. Murad, Endothelial nitric oxide synthase is myristoylated, FEBS Lett. 309:402–404 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. M. Nakane, J.A. Mitchell, U. Forstermann, and F. Murad, Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase, Biochem. Biophys. Res. Commun. 180:1396–1402 (1991).

    Article  PubMed  CAS  Google Scholar 

  45. D.S. Bredt and S.H. Snyder, Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme,Proc. Natl. Acad. Sci. USA 85:682–685 (1990).

    Article  Google Scholar 

  46. U. Forstermann, L. Gorsky, J. Pollock, K. Ishii, H.H.H.W. Schmidt, M. Heller, and F. Murad,Hormone induced biosynthesis of endothelium-derived relaxing factor-nitric oxide-like material in N1E115 neuroblastoma cells required calcium and calmodulin, Mol. Pharmacol., 38:7–13, (1990).

    PubMed  CAS  Google Scholar 

  47. U. Forstermann, L. Gorsky, J.S. Pollock, H.H.H.W. Schmidt, K. Ishii, M. Heller, and F. Murad,Subcellular localization and regulation of the enzymes responsible for EDRF synthesis in endothelial cells and N1E 115 neuroblastoma cells, Eur. J. Pharmacol. 183:1625–1626 (1990).

    Article  Google Scholar 

  48. U. Forstermann, J. Pollock, H.H.H.W. Schmidt, M. Heller, and F. Murad, Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells, Proc. Natl. Acad. Sci. 88:1788–1792 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. U. Forstermann, H.H.H.W. Schmidt, J.S. Pollock, H. Sheng, J.A. Mitchell, T.D. Warner, M. Nakane,and F. Murad, Isoforms of EDRF/NO synthase: Characterization and purification from different cell types, Biochem. Pharmacol. 41:1849–1857 (1991).

    Article  Google Scholar 

  50. S.H. Snyder and D.S. Bredt, Nitric oxide as a neuronal messenger, Trends Pharmacol. Sci. 12:125–130 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. H. Schmidt, G. Gagne, M. Nakane, J. Pollock, M. Miller, and F. Murad, Mapping of neural NO synthase in the rat suggests frequent colocalization with NADPH diaphorase but not soluble guanylyl cyclase and novel paraneural functions for nitrinergic signal transduction, J. Histo. Cytochem. 40:1439–1456 (1992).

    Article  CAS  Google Scholar 

  52. U. Forstermann, H.H.H.W. Schmidt, J.S. Pollock, M. Heller, and F. Murad, Enzymes synthesizing guanylyl cyclase activating factor (GAF) in endothelial cells, neuroblastoma cells and rat brain, J. Cardiovasc. Pharmacol., 17, Suppl. 3:557–564, (1991).

    Article  Google Scholar 

  53. J.S. Pollock, U. Forstermann, J.A. Mitchell, T.D. Warner, H.H.H.W. Schmidt, M. Nakane, and F.Murad, Purification and characterization of particulate EDRF synthase from cultured and native bovine aortic endothelial cells, Proc. Natl. Acad. Sci. USA, 88:10480–10484, (1991).

    Article  PubMed  CAS  Google Scholar 

  54. R. Tracey, J. Pollock, F. Murad, M. Nakane, and U. Forstermann, Identification of an endothelial-like nitric oxide synthase in LLC-PK1 kidney epithelial cells, Amer. J. Physiol., 226:C22–C28,(1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murad, F. (1995). The Nitric Oxide Signal Transduction System. In: Weissman, B.A., Allon, N., Shapira, S. (eds) Biochemical, Pharmacological, and Clinical Aspects of Nitric Oxide. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1903-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1903-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5777-3

  • Online ISBN: 978-1-4615-1903-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics