Advertisement

Multiple Receptor-Dependent Steps Determine the Species Specificity of HCV-229E Infection

  • Robin Levis
  • Christine B. Cardellichio
  • Charles A. Scanga
  • Susan R. Compton
  • Kathryn V. Holmes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)

Abstract

Human coronavirus (HCV) -229E causes disease only in humans and grows in human cells and in cells of other species that express recombinant human aminopeptidase N (hAPN), the receptor for HCV-229E. We compared the species specificity of HCV-229E infection with the species specificity of virus binding using immunofluorescence, assay of virus yields, fluorescence activated cell sorting and a monoclonal antibody directed against hAPN that blocks infection. We found that HCV-229E binds to intestinal brush border membranes (BBM) and to membranes of cell lines from cats, dogs, pigs, and humans, however the virus only infects two of these species. HCV-229E will not bind to BBM or to membranes from cell lines derived from hamster or mice. Animal coronaviruses related to HCV-229E, including FIPV, CCV, and TGEV bind to cell membranes from cats, dogs, cows, pigs and humans (but not mice), while each virus infects cells from only a subset of these species. Infectious genomic HCV-229E RNA, can infect cells of all of these species. These data suggest that the species-specificity of infection for this serogroup of coronaviruses is determined at the levels of virus binding and penetration. Since binding of viral spike glycoprotein to cellular receptors is not the only limiting factor, we suggest that one or more steps associated with virus penetration may determine the species specificity of infection with the HCV-229E serogroup of coronaviruses.

Keywords

Brush Border Membrane Progeny Virion Virus Yield Virus Binding Neuraminic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wege, H., S. Siddell, and V. ter Meulen. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 1982. 99:165.PubMedCrossRefGoogle Scholar
  2. 2.
    Moestl, K. Coronaviridae, pathogenetic and clinical aspects:An update. Comp. Immun. Microbiol. Infect. Dis. 1990. 13:169.CrossRefGoogle Scholar
  3. 3.
    Holmes, K.V. and S. R. Compton. Coronavirus receptors. In, The Coronaviruses. (S. Siddell, Ed.) Plenum Press, in press.Google Scholar
  4. 4.
    Dveksler, G. S., M. N. Pensiero, C. B. Cardellichio, R. K. Williams, G. S. Jiang, K. V. Holmes and C. W. Dieffenbach. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. 1991. J. Virol. 65:6881.PubMedGoogle Scholar
  5. 5.
    Schultze, B. and G. Herrler. Bovine coronavirus uses N-acetyl-9-Oacetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. 1992. J. Gen. Virol. 73:901.PubMedCrossRefGoogle Scholar
  6. 6.
    Delmas, B., J. Gelfi, R. L’Haridon, L. K. Vogel, H Sjöström, O. Norén, and H. Laude. Amnopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. 1992. Nature 357:417.PubMedCrossRefGoogle Scholar
  7. 7.
    Yeager, C. L., R. A. Ashmun, R. K. Williams, C. B. Cardellichio, L. H. Shapiro, A. T. Look, and K. V Holmes. Human aminopeptidase N is a receptor for human coronavirus 229E. 1992. Nature 357:420.PubMedCrossRefGoogle Scholar
  8. 8.
    Schultze, B.“ K. Wahn, H. D. Klenk and G. Herrler. Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding acrivity. 1991. Virology 180:221.PubMedCrossRefGoogle Scholar
  9. 9.
    Nedellec, P., G S. Dveksler, I. Daniels, c. Turbide, B. Chow, A. A. Basile, K. V. Holmes and N. Beauchemin. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. 1994. J. Virol. 68:4525.PubMedGoogle Scholar
  10. 10.
    Williams, R. K., G. S. Jiang and K. V Holmes. Receptor for mouse hepatitis virus is a member fo the carcinoembryonic antigen family of glycoproteins. 1991. Proc. Natl. Acad. Sci. U.S.A. 88:5533.PubMedCrossRefGoogle Scholar
  11. 11.
    Holmes, K. V. and G. S. Dveksler. Specificity of coronavirus-receptor interactions. In Virus Receptors. (E. Wimmer, Ed.) Cold Spring Harbor Press. In press.Google Scholar
  12. 12.
    Delmas, B., J. Gelfi, H. Sjöström, O. Norén, and H. Laude. Further characterization of aminopeptidase N as a receptor for coronaviruses. 1993. Adv. Exp. Med. Biol. 342:292.Google Scholar
  13. 13.
    Compton, S. R., C. B. Stephensen, S. W. Snyder, P. G. Weismiller and K. V. Holmes. Coronavirus species specificity:Murine coronavirus binds to a mouse-specific epitope on its carcinoembryonic antigen-related receptor glycoprotein. 1992. J. Virol. 66:7420.PubMedGoogle Scholar
  14. 14.
    Compton, S. R. Coronavirus attachment and replication. 1988 Ph.D. Dissertation (unpublished). Uniformed Services University, Bethesda, MD.Google Scholar
  15. 15.
    Marshall, W L., D. C. Diamond, M. M. Kowalski, and R. W. Finberg. High level of surface CD4 prevents stable human immunodeficiency virus infection of T-cell transfectants. 1992. J. Virol. 66:5492.PubMedGoogle Scholar
  16. 16.
    Buonocore, L. and J. K. Rose. Blockade of human immunodeficiency virus type 1 production in CD4+ T cells by an intracellular CD4 expressed under control of the viral long terminal repeat. 1993. Proc. Ntl. Acad. Sci. U.S.A. 90:2695.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Robin Levis
    • 1
  • Christine B. Cardellichio
    • 1
  • Charles A. Scanga
    • 1
  • Susan R. Compton
    • 1
  • Kathryn V. Holmes
    • 1
  1. 1.Department of PathologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations