Advertisement

New Retinal Degenerations in the Mouse

  • Thomas H. Roderick
  • Bo Chang
  • Norman L. Hawes
  • John R. Heckenlively

Abstract

For many years we followed with great interest the comparative advances of genetics in the mouse[l] and in human. [2] Relative frequencies of dominant and recessive traits were similar, mapping of genes proceeded at similar rates, and comparative mapping produced surprises through the discovery of the large number and size of mouse and human homologous chromosomal segments retained since the separation of the species 65 million years ago. What was different between mouse and human was the relative frequency of genetic eye disorders, that is, they were relatively frequent in human, and rare in mouse. Recognizing this was because of bias in ascertainment, because mice do not refer themselves for visual diagnosis and treatment, we began a systematic program to find and characterize mouse eye disorders. The Jackson Laboratory, having the largest collection of mouse mutant stocks and genetically diverse inbred strains was an ideal place to look for genetically determined eye variations and disorders. We have not been disappointed. Through ophthalmoscopy, electroretinography and histology, we have discovered disorders affecting all aspects of the eye including the lid, cornea, iris, lens, and retina, resulting in cornea disorders, cataracts, retinal degenerations and glaucoma. Additional studies have shown predisposition to certain eye problems in aged mice of specific stocks or strains.

Keywords

Retinal Pigment Epithelium Outer Segment Photoreceptor Cell Retinal Degeneration Outer Nuclear Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mouse Locus Catalog, MLC of MGD, Mouse Genome Informatics Project, The Jackson Laboratory, Bar Harbor, ME, 1995 Worldwide Web (URL: http://www.informatics.jax.org/).Google Scholar
  2. 2.
    McKusick, V.A., 1995. Online Mendelian Inheritance in Man. World Wide Web (http://www.gdbwww.gdb.org/omim/omimq/1).
  3. 3.
    Mullen, R.J., and LaVail, M.M., 1974. Two new types of retinal degeneration in cerebellar mutant mice. Nature 258: 528–530.CrossRefGoogle Scholar
  4. 4.
    Mullen, R.J., Eicher, E.M., and Sidman, R.L.,1976. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc. Natl. Acad. Sci. USA.73: 208–212.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    LaVail, M.M., Blanks, J.C., and Mullen, R.J., 1982. Retinal degeneration in the pcd cerebellar mutant mouse I. Light microscopic and autoradiographic analysis. J. Comp. Neurol. 212: 217–230.PubMedCrossRefGoogle Scholar
  6. 6.
    Blanks, J.C., Mullen, R.J., LaVail, M.M., 1982. Retinal degeneration in the pcd cerebellar mutant mouse II. Electron microscopic analysis. J. Comp. Neurol. 212: 231–246;.PubMedCrossRefGoogle Scholar
  7. 7.
    Sidman, R.L., and Green, M.C., 1970. “ Nervous,” a new mutant mouse with cerebellar disease. In: M Sabourdy, ed. Les Mutants Pathologiques Chez l’ Animal. Paris: Centre National de la Recherche Scientifique, pp.69–79.Google Scholar
  8. 8.
    Keeler, C., 1966. Retinal degeneration in the mouse is rodless retina. J. Hered. 57: 47–50;.PubMedGoogle Scholar
  9. 9.
    Pitler, S.J., Keeler, C.E., Sidman, R.L., and Baehr, W., 1993. PCR analysis of DNA from 70-year old sections of rodless retina demonstrates identity with the mouse rd defect. Proc. Natl. Acad. Sci. USA 90: 9616–9619.CrossRefGoogle Scholar
  10. 10.
    MATRIX, Mouse Genome Database, Mouse Genome Informatics Project, The Jackson Laboratory, Bar Harbor, ME., 1995 World Wide Web (URL: http: //www.informatics.jax.org/).Google Scholar
  11. 11.
    Bateman, B., Klisak, I., Kojis, T., Mohandas, T., Sparkes, R.S., Li, T., Applebury, M.L., Bowes, C., and Farber, D.B., 1992. Assignment of the ß-subunit of rod photoreceptor cGMP phosphodiesterase gene PDEB (homolog of the mouse rd gene) to human chromosome 4p16. Genomics 12: 601–603.PubMedCrossRefGoogle Scholar
  12. 12.
    Danciger, M., Bowes, C., Kozak, C.A., Lavail, M., and Farber, D.B., 1990. Fine mapping of a putative rd cDNA and its cosegregation with rd expression. Invest. Ophthalmol. & Vis. Sci. (Suppl.) 31: 1427–1432.Google Scholar
  13. 13.
    Bowes, C., Li, T., Frankel, W.N., Danciger, M., Coffin, J.M., Applebury, M.L., and Farber, D.B., 1993. Localization of a retroviral element within the rd gene coding for the ß subunit of cGMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 90: 2955–2959).PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Van Nie, R., Ivanyi, D., and Demant, P., 1978. A new H-2-linked mutation, rds, causing retinal degeneration in the mouse. Tissue Antigens 12: 106–108.PubMedCrossRefGoogle Scholar
  15. 15.
    Jansen, H.G., and Sanyal, S., 1984. Development and degeneration of retina in mutant mice: electron microscopy. J. Comp. Neurol. 224: 71–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Sanyal, S., DeReuter, A., and Hawkins, R.K., 1980. Development and degeneration of retina in rds mutant mice: light microscopy. J. Comp. Neurol. 194: 193–207.PubMedCrossRefGoogle Scholar
  17. 17.
    Travis, G.H., Brennan, M.B., Danileson, P.E., Kozak, CA., and Sutcliffe, J.G. 1989. Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 338: 70–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Connell, G., Bascom, R., Molday, L., Reid, D., Mclnnes, R.R., and Molday, R.S., 1991. Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Proc. Natl. Acad. Sci. USA 88: 723–726.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Messer, A, and Flaherty L., 1986. Autosomal dominance in a late onset motor neuron disease in the mouse. J. Neurogenet. 3: 345–355.PubMedCrossRefGoogle Scholar
  20. 20.
    Messer, A., Stominger, N.L., and Mazurkiewicz, J.E., 1987. Histopathology of the late-onset motor neuron degeneration (Mnd) mutant in the mouse. J. Neurogenet. 4: 201–213.PubMedCrossRefGoogle Scholar
  21. 21.
    Messer, A., Plummer, J., Maskin, P., Coffin, J.M., and Frankel, W.N., 1992. Mapping of the motor neuron degeneration (Mnd) gene, a mouse model of amyotrophic lateral sclerosis (ALS). Genomics 13: 797–802.PubMedCrossRefGoogle Scholar
  22. 22.
    Bronson, R.T., Lake, B.D., Cook, S., Taylor, S., and Davisson, M.T., 1993. Motor neuron degeneration (mnd) of mice is a model of neuronal ceroid lipofuscinosis (Batten’ s disease) Ann. Neurol. 33: 381–385.PubMedCrossRefGoogle Scholar
  23. 23.
    Chang, B., Bronson, R.T, Hawes, N.L., Roderick, T.H., Peng, C., Hageman, G.S., and Heckenlively, J.R., 1994. A retinal degeneration in motor neuron degeneration: A mouse model of ceroid lipofuscinosis. Investigative Ophthal. & Vis. Sci. 35: 1071–1076.Google Scholar
  24. 24.
    Hillyard, A.L., Davisson, M.T., Doolittle, D.P., Guidi, J.N., Maltais, L.J., and Roderick, T.H., 1993. Locus map of mouse (Mus musculus/domesticus). In: Genetic Maps, Nonhuman Vertebrates, Book 4, pp. 4.110-4.142. 6th Edit., Ed. S.J. O’ Brien. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  25. 25.
    Chang, B., Heckenlively, J.R., Hawes, N.L., and Roderick, T.H., 1993. New mouse primary retinal degeneration (rd-3). Genomics 16: 45–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Linberg, K.A., Fariss, R.N., Heckenlively, J.R, Peng, C., Bowes, C., Farber, D.B., and Fisher, S.K., 1994. Structural changes in the developing retina of the rd-3 mouse. Investigative Ophthalmology & Vis.Sci., 35(4): 1610.Google Scholar
  27. 27.
    Heckenlively, J.R., Chang, B., Hawes, N.L., and Roderick, T.H., 1992. Two new mouse retinal primary degenerations. Investigative Ophthalmol & Vis. Sci. 33(4): 1063.Google Scholar
  28. 28.
    Roderick, T.H., Chang, B., Hawes, N.L., and Heckenlively, J.R., 1996. A new dominant retinal degeneration (Rd4) associated with a chromosomal inversion in the mouse (in preparation).Google Scholar
  29. 29.
    Roderick, T.H., 1983. Using inversions to detect and study recessive lethals and detrimentals in mice, pp. 135–167. In: F.J deSerres, and W. Sheridan (eds.), Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk. Plenum Publ. Corp.Google Scholar
  30. 30.
    Heckenlively, J.R., Chang, B., Peng, C., Erway, L.C., Hawes, N.L., Hageman, G.S., and Roderick, T.H., 1995. A mouse model (rd5) for Usher Syndrome; linkage mapping suggests homology to Usher Type I reported at human chromosome 11p15. Proc. Natl. Acad. Sci USA, (in press).Google Scholar
  31. 31.
    Smith, R.J.H., Lee, E.C., Kimberling, W.J., Daiger, S.P., Pelias, M.Z., Keats, B.J.B., Jay, M., Bird, A., Reardon, W., Guest, M., Ayyagari, R. and Hejtmancik, J.F., 1992. Localization of two genes for Usher Type I to chromosome 11. Genomics 14: 995–1002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Thomas H. Roderick
    • 1
  • Bo Chang
    • 1
  • Norman L. Hawes
    • 1
  • John R. Heckenlively
    • 2
  1. 1.The Jackson LaboratoryUSA
  2. 2.The Jules Stein Eye InstituteLos AngelesUSA

Personalised recommendations