Advertisement

Docosahexaenoic Acid Abnormalities in Red Blood Cells of Patients with Retinitis Pigmentosa

  • Dennis R. Hoffman
  • Ricardo Uauy
  • David G. Birch

Abstract

As primary structural components of phospholipids, fatty acids are major building blocks of cell membranes. The ω3 long-chain polyunsaturated fatty acid, docosahexaenoic acid (DHA; 22:6ω3) is one of the most unsaturated fatty acids in the human body and is highly enriched in membrane lipids of rod photoreceptors (1). Several lines of evidence suggest that the accumulation of DHA in retinal membranes is important for normal retinal function. Abnormal electroretinographic (ERG) responses to light stimuli have been reported in DHA deficient animal models and human infants (2–6). Rat and monkey models made ω3 fatty acid deficient by feeding modifications express abnormalities in a- and b-wave ERGs (2–4). We found delayed maturation of rod ERG responses associated with reduced blood lipid levels of DHA in pre-term infants that received a commercial corn-oil-based formula compared to infants fed breast milk or experimentally-enriched DHA-containing formula (5,6). Although the physiological consequences of DHA deficiency are functionally demonstrable, the interaction of membrane-bound DHA with proteins and enzymes of the phototransduction cascade is likely to be a complex function of biochemical and biophysical parameters unique to the highly unsaturated hydrocarbon chain of DHA.

Keywords

Retinitis Pigmentosa Fatty Acid Status Autosomal Dominant Retinitis Pigmentosa Retinitis Pigmentosa Locus Rhodopsin Gene Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fliesler, S.J., and Anderson, R.E., 1983, Chemistry and metabolism of lipids in the vertebrate retina, Prog. Lipid Res. 22:79–131.PubMedCrossRefGoogle Scholar
  2. 2.
    Neuringer, M., Connor, W., Lin, D., Barsted, L. and Luck, S., 1986, Biochemical and functional effects of prenatal and postnatal co-3 fatty acid deficiency on retina and brain in rhesus monkeys, Proc. Natl. Acad. Sci. U.S.A. 83: 4021–4025.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bourre, J.M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G. and Durand, G., 1989, The effects of dietary a-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats, J. Nutr. 119: 1880–1892.PubMedGoogle Scholar
  4. 4.
    Wheeler, T.G., Benolken, R.M. and Anderson, R.E., 1975, Visual membranes: specificity of fatty acid precursors for the electrical response to illumination, Science 188: 1312–1314.PubMedCrossRefGoogle Scholar
  5. 5.
    Uauy, R.D., Birch, D.G., Birch, E.E., Tyson, J.E. and Hoffman, D.R., 1990, Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates, Pediatr. Res., 28: 485–492.PubMedCrossRefGoogle Scholar
  6. 6.
    Birch, D.G., Birch, E.E., Hoffman, D.R. and Uauy, R.D., 1992, Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids, Invest. Ophthal. Vis. Sci. 33: 2365–2376.PubMedGoogle Scholar
  7. 7.
    Converse, C.A., Hammer, H.M., Packard, C.J. and Shepherd, J., 1983, Plasma lipid abnormalities in retinitis pigmentosa and related conditions, Trans. Ophthalmol. Soc. U.K., 103: 508–512.PubMedGoogle Scholar
  8. 8.
    McLachlan, T., McColl, A.J., Collins, M.F., Converse, C.A., Packard, C.J. and Shepherd, J., 1990, A longitudinal study of plasma ω-3 fatty acid levels in a family with X-linked retinitis pigmentosa. Biochem. Soc. Trans., 18:905–906.PubMedGoogle Scholar
  9. 9.
    Anderson, R.E., Maude, M.B., Lewis, R.A., Newsome, D.A. and Fishman, G.A., 1987, Abnormal plasma levels of polyunsaturated fatty acid in autosomal dominant retinitis pigmentosa, Exp. Eye Res., 44: 155–158.PubMedCrossRefGoogle Scholar
  10. 10.
    Holman, R.T., Bibus, D.M., Jeffery, G.H., Smethurst, P. and Crofts, J.W., 1994, Abnormal plasma lipids of patients with retinitis pigmentosa, Lipids, 29: 61–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Newsome, D.A., Anderson, R.E., May, J.G., McKay, T.A. and Maude, M., 1988, Clinical and serum lipid findings in a large family with autosomal dominant retinitis pigmentosa, Ophthalmol. 98: 1691–1695.CrossRefGoogle Scholar
  12. 12.
    Gong, J., Rosner, B., Rees, D.G., Berson, E.L., Weigel-DiFranco, C.A. and Schaefer, E.J., 1992, Plasma docosahexaenoic acid levels in various genetic forms of retinitis pigmentosa, Invest. Ophthal. Vis. Sci. 33: 2596–2602.PubMedGoogle Scholar
  13. 13.
    Hoffman, D.R., Uauy, R. and Birch, D.G., 1993, Red blood cell fatty acid levels in patients with autosomal dominant retinitis pigmentosa, Exp. Eye Res. 57: 359–368.PubMedCrossRefGoogle Scholar
  14. 14.
    Bazan, N.G., Scott, B.L., Reddy, T.S. and Pelias, M.Z., 1986, Decreased content of docosahexaenoate and arachidonate in plasma phospholipids in Usher’s syndrome, Biochem. Biophys. Res. Commun. 141: 600–604.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoffman, D.R. and Birch, D.G., Docosahexaenoic acid in red blood cells of patients with x-linked retinitis pigmentosa, Invest. Ophthalmol. Vis. Sci., in press, 1995.Google Scholar
  16. 16.
    Carlson, S.E., Carver, J.D. and House, S.G., 1986, High fat diets varying in ratios of polyunsaturated to saturated fatty acid and linoleic to linolenic acid: a comparison of rat neural and red cell membrane phospholipids, J. Nutr. 116: 718–726.PubMedGoogle Scholar
  17. 17.
    Connor, W.E., Lin, D.S. and Neuringer, M., 1993, Is the docosahexaenoic acid (DHA, 22:6n-3) content of erythrocytes a marker for the DHA content of brain phospholipids? FASEB. J. 7: A152.Google Scholar
  18. 18.
    Dryja, T., Hahn, L.B., Cowley, G.S., McGee, T.L. and Berson, E.L., 1991, Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa, Proc. Natl. Acad. Sci. U.S.A. 88: 9370–9374.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Sung, C-H., Davenport, M., Hennessey, H.C. et al., 1991, Rhodopsin mutations in autosomal dominant retinitis pigmentosa, Proc. Natl. Acad. Sci. U.S.A. 88: 6481–6485.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Humphries, P., Kenna, P. and Farrar, G. J., 1992, On the molecular genetics of retinitis pigmentosa, Science 256: 804–808.PubMedCrossRefGoogle Scholar
  21. 21.
    Daiger, S., Sadler, L.A. and Rodriguez, J.A., Why do mutations in photoreceptor-specific proteins lead to retinal degenerations? in Controversies in Neurosciences III: Signal Transduction in the Retina and Brain. Polans, A., Series Editor, Cambridge Univ. Press, in press.Google Scholar
  22. 22.
    Kajiwara, K., Berson, E.L. and Dryja, T.P., 1994, Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci, Science 264: 1604–1608.PubMedCrossRefGoogle Scholar
  23. 23.
    McLaughlin, M.E., Sandberg, M.A., Berson, E.L. and Dryja, T.P., 1993, Recessive mutations in the gene encoding the β-subunit of rod phosphodiesterase in patients with retinitis pigmentosa, Nature Genetics 4: 130–134.PubMedCrossRefGoogle Scholar
  24. 24.
    Ott, J., Bhattacharya, S., Chen, J.D. et al., 1990, Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests, Proc. Natl. Acad. Sci. U.S.A. 87: 701–704.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Berson, E.L., Rosen, J.B. and Simonoff, E.A., 1980, Electroretinographic testing as an aid in detection of carriers of X-chromosome-linked retinitis pigmentosa, Am. J. Ophthalmol. 87: 460–468.CrossRefGoogle Scholar
  26. 26.
    Bligh, E.G. and Dyer, W.J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37: 911–917.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoffman, D.R., Uauy, R. and Birch, D.G., Metabolism of omega-3 fatty acids in patients with autosomal dominant retinitis pigmentosa, Exp. Eye Res. in press, 1995.Google Scholar
  28. 28.
    Marmor, M.F., Arden, G.B., Nilsson, S.E.G. and Zrenner, E., 1989, Standards for clinical electroretinography, Arch. Ophthalmol. 107: 816–819.CrossRefGoogle Scholar
  29. 29.
    Birch, D.G. and Fish, G.E., 1987, Rod ERGs in retinitis pigmentosa and cone-rod degeneration, Invest. Ophthalmol. Vis Sci. 28: 140–150.PubMedGoogle Scholar
  30. 30.
    Musarella, M.A., Anson-Cartwright, C.L., McDowell, C., Burghes, A.H.M., Coulson, S.E., Worton, R.G. and Rommens, J.M., 1991, Physical mapping at a potential X-linked retinitis pigmentosa locus (RP3) by pulsed-field gel electrophoresis, Genomics 11: 263–272.PubMedCrossRefGoogle Scholar
  31. 31.
    Scott, B.L. and Bazan, N.G., 1989, Membrane docosahexaenoate is supplied to the developing brain and retina by the liver, Proc. Natl. Acad. Sci. U.S.A. 86: 2903–2907.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Li, J., Wetzel, M.G. and O’Brien, P.J., 1992, Transport of n-3 fatty acids from the intestine to the retina, J. Lipid Res. 33:539–548.PubMedGoogle Scholar
  33. 33.
    Li, J., Gentleman, S., Jiao, X., Wetzel, M.G., O’Brien, P.J. and Chader, G.J., 1993, Uptake of docosahexaenoic acid (DHA) by a fatty acid-specific “receptor” in the retinal plasma membrane. Invest. Ophthal. Vis. Sci. 34: 1329.Google Scholar
  34. 34.
    Jiao, X., Lee, J., Rodriguez DeTurco, E.B., Bazan, N.G. and Chader, G.J., 1994, Tissue distribution of docosahexaenoic acid binding proteins in poodles with progressive rod-cone degeneration (PRCD), Invest. Ophthal. Vis. Sci. 35: 1611.Google Scholar
  35. 35.
    Roels, F., Fischer, S. and Kissling, W., 1993, Polyunsaturated fatty acids in peroxisomal disorders: a hypothesis and a proposal for treatment, J. Neurol. & Psychiatr. 56: 937.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Dennis R. Hoffman
    • 1
    • 2
  • Ricardo Uauy
    • 1
    • 3
  • David G. Birch
    • 1
    • 4
  1. 1.Retina Foundation of the SouthwestDallasUSA
  2. 2.Department of PediatricsUniversity of Texas Southwestern Medical Center at DallasDallasUSA
  3. 3.Department of OphthalmologyUniversity of Texas Southwestern Medical Center at DallasDallasUSA
  4. 4.Clinical Nutrition Unit, Institute of Nutrition and Food Technology (INTA) University of ChileSantiagoChile

Personalised recommendations