Scotopic Threshold Responses and Rod Intensity-Response Functions as Sensitive Indicators of the Carrier Status In X-Linked Recessive Retinitis Pigmentosa

  • A. Iannaccone
  • E. M. Vingolo
  • R. Forte
  • P. Tanzilli
  • B. Grammatico
  • C. De Bernardo
  • E. Rispoli
  • G. Del Porto
  • M. R. Pannarale


In previous studies several authors described modifications of ERG responses in X-linked recessive retinitis pigmentosa (xLRP) carriers (1–8). Investigations on the intensity-response functions of the rod ERG also demonstrated reduction of Vmax in subjects with ophthalmoscopic evidence of the carrier status (pigmentary changes and/or tapetal-like reflex) (4). In patients affected with RP abnormalities of the Oscillatory Potentials (OPs) have also been demonstrated (9,10), suggesting a coexisting impairment of the inner retinal layers. Abnormalities of rod sensitivity were also found at the psychophysical level to flickering stimuli (11).


Retinitis Pigmentosa Amacrine Cell Central Retinal Vein Occlusion Inner Plexiform Layer Congenital Stationary Night Blindness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berson, E.L., Rosen, J.B., and Simonoff, E.A., 1979, Electroretinographic testing as an aid in detection of carriers of X-chromosome-linked retinitis pigmentosa. Am. J. Ophthalmol. 87: 460–468.PubMedCrossRefGoogle Scholar
  2. 2.
    Arden, G.B., Carter, R.M., Hogg, C.R., Powell, J., Ernst, W.J., Clover, G.M., Lyness, A.L., and Quinlan, M.R, 1983, A modified ERG technique and the results obtained in X-linked retinitis pigmentosa. Br. J. Ophthalmol. 67:419–430.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Fishman, G.A., Weinberg, A.B., and McMahon, T.T., 1986, X-linked recessive retinitis pigmentosa. Clinical characteristics of carriers. Arch. Ophthalmol. 104: 1329–1335.PubMedCrossRefGoogle Scholar
  4. 4.
    Peachey, N.S., Fishman, G.A., Derlacki, J., and Alexander, K.R., 1988, Rod and cone dysfunction in carriers of X-linked retinitis pigmentosa. Ophthalmology 95: 677–685.PubMedCrossRefGoogle Scholar
  5. 5.
    Jacobson, S.G., Yagasaki, K., Feuer, W.J., and Roman, A.J., 1989, Interocularasimmetry of visual function in heterozygotes of X-linked retinitis pigmentosa. Exp. Eye Res. 48: 679–691.PubMedCrossRefGoogle Scholar
  6. 6.
    Jacobson, S.G. Roman, A.J., Cideciyan, A.V., Robey, M.G., Iwata, T., and Inana, G., 1992, X-linked retinitis pigmentosa: functional phenotype of an RP2 genotype. Invest. Ophthalmol. Vis. Sci. 33: 3481–3492.PubMedGoogle Scholar
  7. 7.
    Andréasson, S.O.L., and Ehinger, B., 1990, Electroretinographic diagnosis in families with X-linked retinitis pigmentosa. Acta Ophthalmol. 68: 139–144.CrossRefGoogle Scholar
  8. 8.
    Garcia-Sandoval, B. Del Rio, T., Ayuso, C., Serrano, J.M., and Zato, M.A., 1994, 30-Hz flicker ERG in carriers of X-linked retinitis pigmentosa. Proceedings of the 34th AER Meeting, Granada, Spain, p. 76 (Abstract).Google Scholar
  9. 9.
    Ponte, F. Anastasi, M., and Lauricella, M.R., 1990, Retinitis pigmentosa and inner retina. Functional study by means of oscillatory potentials of the electroretinogram. Doc. Ophthalmol 73: 337–346.CrossRefGoogle Scholar
  10. 10.
    Anastasi, M., Lauricella, M., and Ponte, F., 1992, Photopic ERG components in retinitis pigmentosa. Acta Ophthalmol 70: 187–193.CrossRefGoogle Scholar
  11. 11.
    Ernst, W.J., Clover, G., and Faulkner, J., 1981, X-linked retinitis pigmentosa: reduced rod flicker sensitivity in heterozygous females. Invest. Ophthalmol. 20: 812–816.Google Scholar
  12. 12.
    Wakabayashi, K., Gieser, J., and Sieving, P.A., 1988, Aspartate separation of the scotopic threshold response (STR) from the photoreceptor a-wave of the cat and monkey ERG. Invest. Ophthalmol Vis. Sci. 29: 1615–1622.PubMedGoogle Scholar
  13. 13.
    Sieving, P.A., Frishman, L.J., and Steinberg, R.H., 1986, Scotopic threshold response of proximal retina in cat. J. Neurophysiol 56: 1049–1061.PubMedGoogle Scholar
  14. 14.
    Zrenner, E., and Nelson, R., 1988, Spatial characteristics of scotopic threshold responses in the corneally recorded electroretinogram elicited by multispot patterns. Clin. Vis. Sci. 3: 29–44.Google Scholar
  15. 15.
    Frishman, L.J., Sieving, P.A., and Steinberg, R.H., 1988, Contributions to the electroretinogram of currents originating in proximal retina. Vis. Neurosci. 1: 307–315.PubMedCrossRefGoogle Scholar
  16. 16.
    Naarendorp, F., and Sieving, P.A., 1990, Effects of strychnine and GABA-antagonists on the STR of the cat ERG. ARVO Abstracts. Invest. Ophthalmol. Vis. Sci. 31: 390.Google Scholar
  17. 17.
    Naarendorp, F., and Sieving, P.A., 1991, The scotopic threshold response of the cat ERG is suppressed selectively by GABA and glycine. Vision Res. 31: 1–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Sieving, P.A., Nino, C., 1988, Scotopic Threshold Response (STR) of the human electroretinogram. Invest. Ophtahlmol. Vis. Sci. 29: 1608–1614.Google Scholar
  19. 19.
    Sieving, P.A., 1991, Retinal Ganglion cell loss does not abolish the scotopic threshold response (STR) of the cat and human ERG. Clin. Vis. Sci. 6: 149–158.Google Scholar
  20. 20.
    Frishman, L.J. and Steinberg, R.H., 1989, Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina. J. Neurophysiol. 61: 1233–1243.PubMedGoogle Scholar
  21. 21.
    Aylward, G.W., 1989, The Scotopic Threshold Response in Diabetic Retinopathy. Eye 3: 626–637.PubMedCrossRefGoogle Scholar
  22. 22.
    Murayama, K., Kuo, C.Y., and Sieving, P.A., 1991, Abnormal threshold ERG response in X-linked juvenile retinoschisis: evidence for a proximal retinal origin of the human STR. Clin. Vis. Sci. 6: 317–322.Google Scholar
  23. 23.
    Graham, S.L., and Vaegan, 1991, High correlation between absolute psychophysical threshold and the scotopic threshold response to the same stimulus. Br. J. Ophthalmol. 75: 603–607.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Iannaccone, A. Vingolo, E.M., Tanzilli, P., and Rispoli, E., 1994, The Scotopic Threshold Response in different forms of Congenital Stationary Night Blindness. ARVO Abstracts. Invest. Ophthalmol. Vis. Sci. 35: 1377.Google Scholar
  25. 25.
    Miyake, Y., Horiguchi, M., Terasaki, H., and Kondo, M., 1994, Scotopic Threshold Response in complete and incomplete types of Congenital Stationary Night Blindness. Invest. Ophthalmol. Vis. Sci. 35: 3770–3775.PubMedGoogle Scholar
  26. 26.
    Iannaccone, A., Forte, R., Tanzilli, P., De Bernardo, C., Vingolo, E.M., and Pannarale, M.R., 1994, Clinical and electroretinographic intrafamilial variability in the Goldmann-Favre vitreo-retinal dystrophy. Proceedings of the International Workshop on Inherited Paediatric Retinal Disorders, Regensburg, p. 36 (Abstract). Ophthalmic Genetics (submitted for publication).Google Scholar
  27. 27.
    Rispoli, E., Tommasini, P., Pannarale, L., Carloni, C., Perdicchi, A., Rispoli, M., and Pannarale, M.R., 1993, The Scotopic Threshold Response in diabetic patients without evidence of retinopathy. Proceedings of the 4th Schepens International Society Meeting, Hong Kong, p. 148 (Abstract).Google Scholar
  28. 28.
    Carloni, C., Malagola, R., Tommasini, P., and Rispoli, E., 1994, The Scotopic Threshold Response in non-insulin dependent diabetic patients. Proceedings of the 74th Congress of Italian Society of Ophthalmology (SOI), Mondovi (Cuneo), Italy: Arti Grafiche Dial (in press).Google Scholar
  29. 29.
    Rispoli, E., Tommasini, P., Pannarale, L., Carrozzoni, P., Giusti, C., Rispoli, M., and Pannarale, M.R., 1993, Clinical applications of the Scotopic Threshold Response in myopic subjects. Proceedings of the 4th Schepens International Society Meeting, Hong Kong, p. 126 (Abstract).Google Scholar
  30. 30.
    Del Porto, G., Vingolo, E.M., David, D., Steindl, K., Wedemann, H., Forte, R., Iannaccone, A., Gal, A., and Pannarale, M.R., 1993, Clinical features of autosomal dominant retinitis pigmentosa associated with the Gly-188-Arg mutation of the rhodopsin gene. In: Hollyfield, J.G., La Vail, M.M., Anderson, R.E., editors, Retinal Degeneration. Clinical and Laboratory Applications. New York: Plenum Press: 91–101.CrossRefGoogle Scholar
  31. 31.
    Rispoli, E., Iannaccone, A., and Vingolo, E.M., 1994, Low-noise electroretinogram recording techniques in retinitis pigmentosa. Doc. Ophthalmol. (in press).Google Scholar
  32. 32.
    Masland, R.H., 1988, Amacrine cells. TINS 11: 405–410.PubMedGoogle Scholar
  33. 33.
    Sharpe, L.T., Stockman, A., and MacLeod, D.I.A., 1989, Rod flicker perception: scotopic duality, phase lags and destructive interference. Vision Res. 29, 1539–1559.PubMedCrossRefGoogle Scholar
  34. 34.
    Sharpe, L.T., Fach, C.C., and Stockman, A., 1993, The spectral properties of the two rod pathways. Vision Res., 33, 2705–2720.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Iannaccone
    • 1
  • E. M. Vingolo
    • 1
  • R. Forte
    • 1
  • P. Tanzilli
    • 1
  • B. Grammatico
    • 2
  • C. De Bernardo
    • 2
  • E. Rispoli
    • 1
  • G. Del Porto
    • 2
  • M. R. Pannarale
    • 1
  1. 1.Department of Ocular Electrophysiology, Center for Inherited Degenerative Retinal DisordersUniversity “La Sapienza”, Institute of OphthalmologyRomeItaly
  2. 2.Medical Genetic Section of the Experimental Medicine DepartmentUniversity “La Sapienza”RomeItaly

Personalised recommendations