Skip to main content

Inhibitory Effects of Cycloheximide and Flunarizine on Light-Induced Apoptosis of Photoreceptor Cells

  • Chapter
Degenerative Diseases of the Retina

Abstract

The pathogenesis of photic retinopathy has been actively investigated for many years. Although the exact pathogenic mechanism involved in light-induced photoreceptor degeneration remains unknown, certain hypotheses were made based on previous animal studies [1-8]. Free radical formation and lipid peroxidation are among the most widely accepted hypotheses regarding the pathogenesis of photic retinopathy [1-5]. In addition, possible roles for protein synthesis and alteration of intracellular Ca2+ concentration in light-induced photoreceptor cell death have been suggested [6–8]. Protein synthesis inhibitors, such as cycloheximide and Ca2+ channel overload blockers, such as flunarizine, were both demonstrated to have ameliorative effects on retinal photic injury [6–8]. These findings provided supportive evidence of the possible involvement of protein synthesis and alteration of intracellular Ca2+ concentration in retinal photic injury. However, the mechanism whereby these two factors ameliorated light-induced photoreceptor cell death was not determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feeney L, Berman ER. Oxygen toxicity: membrane damage by free radicals. Invest Ophthalmol Vis Sci 1976; 15: 789–792.

    CAS  Google Scholar 

  2. Noell WK. Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res 1980; 20: 1163–1171.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson RE, Rapp LM, Wiegand RD. Lipid peroxidation and retinal degeneration. Current Eye Res 1984; 3(1): 223–227.

    Article  CAS  Google Scholar 

  4. Organisciak DT, Wang HM, Xie A, Reeves DS and Donoso LA. Intense-light mediated changes in rat rod outer segment lipids and proteins. Prog Clin Biol. Res 1989; 314: 493–512.

    CAS  PubMed  Google Scholar 

  5. Tso MOM. Experiments on visual cells by nature and man: in search of treatment for photoreceptor degeneration. Invest Ophthalmol Vis Sci 1989; 30: 2430–2454.

    CAS  PubMed  Google Scholar 

  6. Shahinfar S, Edward DP and Tso MOM. A pathologic study of photoreceptor cell death in retinal photic injury. Current Eye Res 1991; 10: 47–59.

    Article  CAS  Google Scholar 

  7. Edward DP, Lam TT, Shahinfar S, Li J and Tso MOM. Amelioration of light-induced retinal degeneration by a calcium overload blocker flunarizine. Arch Ophthalmol 1991; 109: 554–562.

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Edward DP, Lam TT, Tso MOM. Amelioration of retinal photic injury by a combination of flunarizine and dimethylthiourea. Exp Eye Res 1993; 56: 71–78.

    Article  CAS  PubMed  Google Scholar 

  9. Tomei LD, Cope FO. Apoptosis: the molecular basis of cell death. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1991.

    Google Scholar 

  10. Compton MM. A biochemical hallmark of apoptosis: internucleosomal degeneration of the genome. Cancer Metastasis Rev 1992; 11: 105–119.

    Article  CAS  PubMed  Google Scholar 

  11. Deckwerth TL, Johnson EM Jr. Temporal analysis of events associated with programmed cell death (apoptosis) of neurons deprived of nerve growth factor. J Cell Biol. 1993; 123: 1207–1222.

    Article  CAS  PubMed  Google Scholar 

  12. Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EMJ. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol. 1988; 106: 829–844.

    Article  CAS  PubMed  Google Scholar 

  13. Oppenheim RW, Prevette D, Tytell M, Homma S. Naturally occurring and induced neuronal death in the chick embryo in vivo requires protein and RNA synthesis: evidence for the role of cell death genes. Dev Biol. 1990; 138: 104–113.

    Article  CAS  PubMed  Google Scholar 

  14. Ghibelli L, Nosseri C., Oliverio S, Piacentini M, Autuori F. Cycloheximide can rescue heat-shocked L cells from death by blocking stress-induced apoptosis. Exp Cell Res 1992; 201: 436–443.

    Article  CAS  PubMed  Google Scholar 

  15. Martin SJ. Protein or RNA synthesis inhibition induces apoptosis of mature human CD4+ T cell blasts. Immunol Lett 1993; 35: 125–134.

    Article  CAS  PubMed  Google Scholar 

  16. Inouye M, Tamaru M, Kameyama Y. Effects of cycloheximide and actinomycin D on radiation-induced apoptotic cell death in the developing mouse cerebellum. Int J Rad Biol. 1992; 61: 669–674.

    Article  CAS  PubMed  Google Scholar 

  17. Wyllie, AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 1984; 142: 67–77.

    Article  CAS  PubMed  Google Scholar 

  18. Cohen JJ, Duke RC. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 1984; 132: 38–42.

    CAS  PubMed  Google Scholar 

  19. Johnson EM Jr, Deckwerth T. Molecular mechanisms of developmental neuronal death. Annu Rev Neurosci 1993; 16: 31–46.

    Article  CAS  PubMed  Google Scholar 

  20. Jones DP, McCondey DJ, Nicotera P, Orrenius S. Calcium-activated DNA fragmentation in rat liver nuclei. J Biol. Chem 1989; 264: 6398–6403.

    CAS  PubMed  Google Scholar 

  21. Duke RC, Chervenak R, Cohen JJ. Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci USA 1983; 80: 6361–6365.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. McConkey DJ, Hartzeil P, Duddy SK, Hakansson H, Orrenius S. 2,3,7,8 tetrachlorodibenzo-p-dioxin kills immature thymocytes by Ca2+-mediated endonuclease activation. Science 1988; 242: 256–259.

    Article  CAS  PubMed  Google Scholar 

  23. McConkey DJ, Nicotera P, Hartzell P, Bellomo G, Wyllie AH, Orrenius S. Glucocorticoid activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration. Arch Biochem Biophys 1989; 269: 365–370.

    Article  CAS  PubMed  Google Scholar 

  24. McConkey DJ, Orrenius S, Fondai M. Cellular signaling in programmed cell death (apoptosis). Immunol Today 1990; 11: 120–121.

    Article  CAS  PubMed  Google Scholar 

  25. McConkey DJ, Jondal M, Orrenius S. Cellular signaling in thymocyte apoptosis. Semin Immunol 1992; 4: 371–377.

    CAS  PubMed  Google Scholar 

  26. Collins RJ, Harmon BV, Souvlis T, Pope JH, Kerr JF. Effects of cycloheximide on B-chronic lymphocytic leukaemic and normal lymphocytes in vitro: induction of apoptosis. Br J Cancer 1991; 64: 518–522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Belloma G, Perotti M, Taddei F et al. Tumor necrosis factor alpha induces apoptosis in mammary adenocarcinoma cells by an increase in intranuclear free Ca2+ concentration and DNA fragmentation. Cancer Res 1992; 52: 1342–1346.

    Google Scholar 

  28. Chang GQ, Hao Y, Wong F. Apoptosis: Final common pathway of photoreceptor death in rd, rds and rhodopsin mutant mice. Neuron. 1993; 11: 595–605.

    Article  CAS  PubMed  Google Scholar 

  29. Tso MOM, Zhang C., Abler AS, et al. Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci 1994; 2693–2699.

    Google Scholar 

  30. Rich KM, Hollowell JP. Flunarizine protects neurons from death after axotomy or NGF deprivation. Science 1990; 248: 1419–1421.

    Article  CAS  PubMed  Google Scholar 

  31. Gavriela Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA. J Cell Biol. 1992; 119: 493–501.

    Article  Google Scholar 

  32. Tilly JL, Hsueh AJ. Microscale autoradiographic method for the qualitative and quantitative analysis of apoptotic DNA fragmentation. J Cell Physiol 1993; 153(3): 519–526.

    Article  Google Scholar 

  33. Umansky SR. Apoptotic process in the radiation-induced death of lymphocytes, in Tomei LD, Cope FO, eds. Apoptosis: The molecular basis of cell death. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 1991: 193–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, S., Chang, CJ., Abler, A.S., Tso, M.O.M. (1995). Inhibitory Effects of Cycloheximide and Flunarizine on Light-Induced Apoptosis of Photoreceptor Cells. In: Anderson, R.E., LaVail, M.M., Hollyfield, J.G. (eds) Degenerative Diseases of the Retina. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1897-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1897-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5774-2

  • Online ISBN: 978-1-4615-1897-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics