Molecular Genetic Studies of Retinal Dystrophies Principally Affecting the Macula

  • Kevin Evans
  • Cheryl Y. Gregory
  • Sujeewa Wijesuriya
  • Marcelle Jay
  • Amresh Chopdar
  • Shomi S. Bhattacharya


More than 3000 inherited disorders are known to afflict man. Amongst these, 372 distinct entities are associated with choroidoretinal dystrophies, 104 of which are solely ocular (1). For most, little information is as yet available on the underlying genetic or biological deficit. Developments in molecular genetics are improving this situation. Recently a number of retinal dystrophies have been assigned to refined chromosomal loci and in some cases specific gene mutations identified. Dystrophies which exclusively or principally affect the macular region of the human retina are an important subgroup. Characteristically there is earlier onset loss of central acuity with color vision deficits. These conditions contribute significantly to the incidence of blindness in developed countries such as the USA and UK, especially for onset of blindness in childhood (2). Since some macular diseases share similar histopathologic and clinical features, elucidation of the precise pathogenic mechanisms in selected examples may indirectly shed light on the pathogenesis of others. Therefore, with the aim of identifying genetic loci important in the pathogenesis of macular disease in general, a molecular genetic study was undertaken in seven pedigrees expressing different phenotypes that principally affect macular function.


Myotonic Dystrophy Retinal Dystrophy Macular Disease Macular Dystrophy Cone Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McKusick, V.A., “Mendelian inheritance in man, 9th ed,” Johns Hopkins University Press, Baltimore (1992).Google Scholar
  2. 2.
    Elston, J., Epidemiology of visual handicap in childhood, in: “Pediatric Ophthalmology,” D Taylor, ed., Blackwell Scientific Publications, London, (1992).Google Scholar
  3. 3.
    Polkinghorne, P.J., Capon, M.R., Berninger, T., Lyness, A.L., Sehmi, K., and Bird, A.C., 1989, Sorsby’s fundus dystrophy. A clinical study, Ophthalmology 96:1763–1768.PubMedCrossRefGoogle Scholar
  4. 4.
    Evans, K., Duvall-Young, J., Arden, G.B., and Bird, A.C., 1995, Chromosome 19q cone-rod retinal dystrophy, ocular phenotype, Arch. Ophthalmol 113:195–201.PubMedCrossRefGoogle Scholar
  5. 5.
    Holz, F.G., Evans, K., Gregory, C.Y., Bhattacharya, S.S., and Bird, A.C., 1995, Autosomal dominant macular dystrophy simulating North Carolina macular dystrophy, Arch. Ophthalmol. 113:178–184.PubMedCrossRefGoogle Scholar
  6. 6.
    Chopdar, A., 1993, A variant of central areolar choroidal dystrophy, Ophthal. Paed. Genet. 14:151–164.PubMedCrossRefGoogle Scholar
  7. 7.
    Evans, K., Fryer, A., Inglehearn, C., Duvall-Young, J., Whittaker, J.L., Gregory, C.Y., Butler, R., Ebenezer, N., Hunt, D.M., and Bhattacharya, S.S., 1994, Genetic linkage of cone-rod retinal dystrophy to chromosome 19q and evidence for segregation distortion, Nature Genet. 6:210–213.PubMedCrossRefGoogle Scholar
  8. 8.
    Attwood, J., and Bryant, S., 1988, A computer programme to make analysis with LIPED and LINKAGE easier to perform and less prone to input error, Ann. Hum. Genet. 52:259.PubMedCrossRefGoogle Scholar
  9. 9.
    Lathrop, G.M., Lalouel, J.M., Julier, C., Ott, J., 1984, Strategies for multipoint linkage analysis in humans, Proc. Natl. Acad. Sci. USA 81:3443–3446.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Curtis, D., and Gurling,H., 1993, A procedure for combining two-point lod scores into a summary multipoint map, Hum. Hered. 43:173–185.PubMedCrossRefGoogle Scholar
  11. 11.
    Weber, B.H.F., Vogt, G., Pruett, R.C., Stohr, H., and Felbor, U., 1994, Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy, Nature Genet. 8:352–355.PubMedCrossRefGoogle Scholar
  12. 12.
    Brook, J.D., McCurrach, M.E., Harley, H.G., Buckler, A.J., Church, D., Aburtani, H., Hunter, K., Stanton, V.P., Thirion, J.P., Hudson, T., Sohn, R., Zemelman, B., Snell, R.G., Rundle, S.A., Crow, S., Davies, J., Shelbourne, P., Buxton, J., Jones, C., Juxonen, V., Johnson, K., Harper, P.S., Shaw, D.J., and Houseman, D.E., 1992, Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′-end of a transcript encoding a protein kinase family member, Cell 68:799–808.PubMedCrossRefGoogle Scholar
  13. 13.
    Capon, M.R., Marshall, J., Krafft, J.I., Alexander, R.A., Hiscott, P.S., and Bird, A.C., 1989, Sorsby’s fundus dystrophy. A light and electron microscopic study, Ophthalmology 96:1769–1777.PubMedCrossRefGoogle Scholar
  14. 14.
    Gregory, C.Y., Wijesuriya, S., Evans, K., Jay, M.R., Bird, A.C., and Bhattacharya, S.S., 1994, Refinement of Sorsby’s fundus dystrophy between D22S273 and D22S280. J. Med. Genet. In Press.Google Scholar
  15. 15.
    Gregory, C.Y., Evans, K., Whittaker, J.L., Fryer, A., Weissenbach, J., and Bhattacharya, S.S., 1994, Refinement of the cone-rod retinal dystrophy locus on chromosome 19q, Am. J. Hum. Genet. 55:1061–1063.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Ghanshani, S., Pak, M., MePherson, J.D., Strong, M., Dethlefs, B., Wasmuth, J.J., Salkoff, L., Gutman, G.A., and Chandy, K.G., 1992, Genomic organisation, nucleotide sequence, and cellular distribution of a Shaw-related potassium channel gene, Kv3.3, and mapping of Kv3.3 and Kv3.4 to human chromosomes 19 and 1, Genomics 12:190–196.PubMedCrossRefGoogle Scholar
  17. 17.
    Klumpp, D.J., Song, E-J., Sheng, M., Jan, L.Y., and Pinto, L.H., 1994, Potassium channel show differential expression and subcellular localisation within the mouse retina, Invest. Ophthalmol. Vis. Sci. 35(Suppl) pl491.Google Scholar
  18. 18.
    Small, K.W., Killian, J., and McLean, W.C., (1991). North Carolina dominant progressive foveal dystrophy: how progressive is it? Br. J. Ophthalmol. 75:401–406.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Small, K.W., Weber, J.L., Roser, A., Lennon, F., Vance, J.M., and Pericak-Vance, M.A., 1992, North Carolina macular dystrophy is assigned to chromosome 6, Genomics 12:681–685.CrossRefGoogle Scholar
  20. 20.
    Kaplan, J., Gerber, S., Larget-Piet, D., Rozet, J-M., Dollfus, H., Dufier, J-L., Oent, S., Postel-Vinay, A., Janin, N., Briard, M-L., Frezal, J., and Munnich, A., 1993, A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1, Nature Genet. 5:308–311.PubMedCrossRefGoogle Scholar
  21. 21.
    Wells, J., Wroblewski, J., Keen, J., Inglehearn, C., Jubb, C., Eckstein, A., Jay, M., Arden, G., Bhattacharya, S.S., Fitzke, F., and Bird, A.C., 1993, Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy, Nature Genet. 3:202–207.CrossRefGoogle Scholar
  22. 22.
    Stone, E.M., Nichols, B.E., Kimura, A.E., Weingeist, T.A., Drack, A., and Sheffield, V.C., 1994, Clinical features of a Stargardt-like dominant progressive macular dystrophy with genetic linkage to chromosome 6q, Arch. Ophthalmol. 112:765–772.PubMedCrossRefGoogle Scholar
  23. 23.
    Tranebjaerg, L., Sjo, O., and Warburg, M., 1986, Retinal cone dysfunction and mental retardation associated with a de novo balanced translocation 1:6(q44;q27), Ophthalmic Paediatr. Genet. 7:167–173.PubMedCrossRefGoogle Scholar
  24. 24.
    Kremer, H., Pinckers, A., van den Helm, B., Deutman, A.F., Ropers, H-H., and Mariman, E.C.M., 1994, Localisation of the gene for dominant cystoid macular dystrophy on chromosome 7p, Hum. Mol. Genet. 3:299–302.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferell, R.E., Hittner, H.M., and Antaszyk, J.H., 1983, Linkage of atypical vitelliform macular dystrophy (VMD-1) to the soluble glutamate pyruvate transaminase (GPT1) locus, Am. J. Hum. Genet. 35:78–84.Google Scholar
  26. 26.
    Stone, E.M., Nichols, B.E., Streb, L.M., Kimura, A.E., and Sheffield, V.C., 1992, Genetic linkage of vitelliform macular degeneration (Best’s disease) to chromosome 11q13, Nature Genet. 3:213–218.Google Scholar
  27. 27.
    Zhang, K., Bither, P.P., Park, R., Donoso, L.A., Seidman, J.G., and Seidman, C.E., 1994, A dominant Stargardt’s macular dystrophy locus maps to chromosome 13q34, Arch. Ophthalmol. 112:759–764.PubMedCrossRefGoogle Scholar
  28. 28.
    Kylstra, J.A., and Aylsworth, A.S., 1993, Cone-rod retinal dystrophy in a patient with neurofibromatosis type 1, Can. J. Ophthalmol. 28:79–80.PubMedGoogle Scholar
  29. 29.
    Warburg, M., Sjo, O., and Fledelius, H.C., 1991, Deletion mapping of a retinal cone-rod dystrophy: assignment to 18q211, Am. J. Med. Genet. 39:288–293.PubMedCrossRefGoogle Scholar
  30. 30.
    Meire, F.M., Bergen, A.A.B., De Rouck, A., Leys, M., and Delleman, J.W., 1994, X linked progressive cone dystrophy, Br. J. Ophthalmol. 78:103–108.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Meikle, M.C., Hembry, R.M., Holley, J., Horton, C., McFarlane, G., and Reynolds, J.J., 1994, J. Periodontal Res. 29:118–126.PubMedCrossRefGoogle Scholar
  32. 32.
    Silvestri, G., Johnson, P.B., and Hughes, A.E., 1994, Is genetic predisposition an important risk factor in age-related macular degeneration, Eye 8:564–568.PubMedCrossRefGoogle Scholar
  33. 33.
    Dosso, A.A., and Bovet, J., 1992, Monozygotic twin brothers with age-related macular degeneration, Ophthalmologica 205:24–28.PubMedCrossRefGoogle Scholar
  34. 34.
    Hyman, L.G., Lilienfield, A.M., Ferris, F.L., and Fine, S.L., 1983, Senile macular degeneration: a case-control study, Am. J. Epidemiol. 118:213–227.PubMedGoogle Scholar
  35. 35.
    Piguet, B., Wells, J.A., Palmvang, B., Wormald, R., Chisholm, I.H., and Bird, A.C., 1993, Age-related Bruch’s membrane change: a clinical study of the relative role of heredity and environment, Br. J. Ophthalmol. 77:400–403.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kevin Evans
    • 1
  • Cheryl Y. Gregory
    • 2
  • Sujeewa Wijesuriya
    • 2
  • Marcelle Jay
    • 1
  • Amresh Chopdar
    • 3
  • Shomi S. Bhattacharya
    • 2
  1. 1.Department of Clinical OphthalmologyMoorfields Eye HospitalLondonUK
  2. 2.Department of Molecular GeneticsInstitute of OphthalmologyLondonUK
  3. 3.Department of OphthalmologyEasy Surrey HospitalRedhillUK

Personalised recommendations