Advertisement

The Role of the Retinal Degeneration B Protein in the Drosophila Visual System

Function of Drosophila rdgB Protein in Photoreceptors
  • D. R. Hyde
  • S. Milligan
  • T. S. Vihtelic

Abstract

The Drosophila melanogaster visual system has been extensively studied using molecular, genetic and biochemical approaches. These analyses have uncovered several key components that are required for phototransduction. At least four different rhodopsin molecules are utilized to absorb light [1]. The rhodopsins have different spectral sensitivities and are expressed in mutually exclusive photoreceptor cells of the larval photoorgan, the adult ocelli, and the compound eye. The ninaE gene encodes the opsin that is expressed in photoreceptors R1-6 in the compound eye [2, 3]. The Drosophila phototransduction cascade has an absolute requirement for the norpA + gene [1,4, 5], which encodes a phosphatidylinositol-specific phospholipase C-β (PLC) protein [6, 7]. A retinal-specific heterotrimeric G-protein links the photoactivated metarhodopsin and the norpA-encoded PLC. The G protein’s alpha subunit (DGqα), which is a member of the Gqa subfamily, is encoded by the dgq gene [8]. Biochemical and genetic data demonstrate that the DGqa protein responds to light-activated metarhodopsin and in turn, stimulates the norpA -encoded PLC [9]. A mutation in the retinal-specific Gβ subunit, gbe, produces an abnormal electrophysiological response to light [10]. The maC-encoded, retinal-specific protein kinase C [11] is thought to be stimulated by diacyl glycerol, which is generated from the PLC-mediated hydrolysis of PIP2. Even though this inaC-encoded protein kinase C is activated by the products of PLC hydrolysis, it is not required for activation of the light channels. Rather, this protein kinase C plays a role in the deactivation of the light-response [11, 12, 13, 14, 15]. While the ligands of the invertebrate light-activated channels are not known, it appears that the transient receptor potential (trp) gene encodes one type of these channels [16, 17, 18].

Keywords

Retinitis Pigmentosa Photoreceptor Cell Retinal Degeneration Mouse Retina Opsin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, D. P., Stamnes, M. A. and Zuker, C. S., 1991, Signal Transduction in the Visual System of Drosophila, Annu. Rev. Cell Biol. 7: 161–190.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Tousa, J. E., Baehr, W., Martin, R. L., Hirsh, J., Pak, W. L. and Applebury, M. L., 1985, The Drosophila ninaE gene encodes an opsin., Cell. 40: 839–850.PubMedCrossRefGoogle Scholar
  3. 3.
    Zuker, C. S., Cowman, A. F. and Rubin, G. M., 1985, Isolation and structure of a rhodopsin gene from D. melanogaster, Cell. 40: 851–858.PubMedCrossRefGoogle Scholar
  4. 4.
    Hotta, Y. and Benzer, S., 1970, Genetic dissection of the Drosophila nervous system by means of mosaics, Proc. Natl. Acad. Sci. USA. 67: 1156–1163.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Pak, W. L., Grossfield, J. and Arnold, K., 1970, Mutants in the visual pathway of Drosophila melanogaster, Nature (Lond.). 227: 518–520.CrossRefGoogle Scholar
  6. 6.
    Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Stellar, H., Rubin, G. and Pak, W. L., 1988, Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction, Cell. 54: 723–733.PubMedCrossRefGoogle Scholar
  7. 7.
    Schneuwly, S., Burg, M. G., Lending, C., Perdew, M. H. and Pak, W. L., 1991, Properties of photoreceptor-specific phospholipase C encoded by the norpA gene of Drosophila melanogaster, J. Biol. Chem. 266: 24314–24319.PubMedGoogle Scholar
  8. 8.
    Lee, Y.-G., Dobbs, M. B., Verardi, M. L. and Hyde, D. R., 1990, dgq: a Drosophila gene encoding a visual system-specific Ga molecule, Neuron. 5: 889–898.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee, Y. J., Shah, S., Suzuki, E., Zars, T., O’Day, P. M. and Hyde, D. R., 1994, The Drosophila dgq gene encodes a Ga protein that mediates phototransduction, Neuron. 13: 1143–1157.PubMedCrossRefGoogle Scholar
  10. 10.
    Dolph, P. J., Mansonhing, H., Yarfitz, S., Colley, N. J., Deer, J. R., Spencer, M., Hurley, J. B. and Zuker, C. S., 1994, An eye-specific Gβ subunit essential for termination of the phototransduction cascade, Nature. 370: 59–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith, D. P., Ranganathan, R., Hardy, R. W., Marx, J., Tsuchida, T. and Zuker, C. S., 1991, Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C., Science. 254: 1478–1484.PubMedCrossRefGoogle Scholar
  12. 12.
    Ranganathan, R., Harris, G. L., Stevens, C. F. and Zuker, C. S., 1991, A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization, Nature. 354: 230–232.PubMedCrossRefGoogle Scholar
  13. 13.
    Hardie, R. C., Peretz, A., Susstoby, E., Romglas, A., Bishop, S. A., Selinger, Z. and Minke, B., 1993, Protein kinase-C is required for light adaptation in Drosophila photoreceptors, Nature. 363: 634–637.PubMedCrossRefGoogle Scholar
  14. 14.
    Selinger, Z., Doza, Y. N. and Minke, B., 1993, Mechanisms and genetics of photoreceptors desensitization in Drosophila flies, Biochim Biophys Acta. 1179: 283–299.PubMedCrossRefGoogle Scholar
  15. 15.
    Hardie, R. C. and Minke, B., 1994, Calcium-dependent inactivation of light-sensitive channels in Drosophila photoreceptors, J Gen Physiol 103: 409–427.PubMedCrossRefGoogle Scholar
  16. 16.
    Montell, C. and Rubin, G. M., 1989, Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction, Neuron. 2: 1313–1323.PubMedCrossRefGoogle Scholar
  17. 17.
    Hardie, R. C. and Minke, B., 1992, The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors, Neuron. 8: 643–651.PubMedCrossRefGoogle Scholar
  18. 18.
    Hardie, R. C. and Minke, B., 1994, Spontaneous activation of light-sensitive channels in Drosophila photoreceptors, J Gen Physiol. 103: 389–407.PubMedCrossRefGoogle Scholar
  19. 19.
    Harris, W. A. and Stark, W. S., 1977, Hereditary retinal degeneration in Drosophila melanogaster: a mutant defect associated with the phototransduction process, J. Gen. Physiol. 69: 261–291.PubMedCrossRefGoogle Scholar
  20. 20.
    Stark, W. S., Chen, D.-M., Johnson, M. A. and Frayer, K. L., 1983, The rdgB gene of Drosophila: retinal degeneration in different alleles and inhibition by norpA, J. Insect Physiol. 29: 123–131.CrossRefGoogle Scholar
  21. 21.
    Minke, B., Rubinstein, C. T., Sahly, I., Bar-Nachum, S., Timberg, R. and Selinger, Z., 1990, Phorbol ester induces photoreceptor-specific degeneration in a Drosophila mutant, Proc. Natl. Acad. Sci. USA. 87: 113–117.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Woodard, C., Alcorta, E. and Carlson, J., 1992, The rdgB gene of Drosophila: a link between vision and olfaction, J. Neurogenetics. 8: 17–31.CrossRefGoogle Scholar
  23. 23.
    Nathans, J., 1994, In the eye of the beholder: visual pigments and inherited variation in human vision, Cell. 78: 357–360.PubMedCrossRefGoogle Scholar
  24. 24.
    Kurada, P. and O’Tousa, J. E., 1995, Retinal degeneration caused by dominant rhodopsin mutations in Drosophila, Neuron, in press.Google Scholar
  25. 25.
    O’Tousa, J. E., Leonard, D. S. and Pak, W. L., 1989, Morphological defects in ora JK84 photoreceptors caused by mutation in R1-6 opsin gene of Drosophila., J. Neurogenetics. 6: 41–52.CrossRefGoogle Scholar
  26. 26.
    Leonard, D. S., Bowman, V. D., Ready, D. F. and Pak, W. L., 1992, Degeneration of photoreceptors in rhodopsin mutants of Drosophila, J. Neurobiol. 23: 605–626.PubMedCrossRefGoogle Scholar
  27. 27.
    Meyertholen, E. P., Stein, P. J., Williams, M. A. and Ostroy, S. E., 1987, Studies of the Drosophila norpA phototransduction mutant II. Photoreceptor degeneration and rhodopsin maintenance, J. Comp. Physiol. 161: 793–798.CrossRefGoogle Scholar
  28. 28.
    Stark, W. S., Sapp, R. and Carlson, S. D., 1989, Photoreceptor maintenance and degeneration in the norpA (no receptor potential-A) mutant of Drosophila melanogaster, J. Neurogenetics. 5: 49–59.CrossRefGoogle Scholar
  29. 29.
    Bowes, C., Li, T. S., Danciger, M., Baxter, L. C., Applebury, M. L. and Farber, D. B., 1990, Retinal degeneration in the rd mouse is caused by a defect in the beta-subunit of rod cGMP-phosphodiesterase, Nature. 341: 677–680.CrossRefGoogle Scholar
  30. 30.
    Byk, T., Baryaacov, M., Doza, Y. N., Minke, B. and Selinger, Z., 1993, Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell, Proc Natl Acad Sci USA. 90: 1907–1911.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Portera-Cailliau, C., Sung, C.-H., Nathans, J. and Adler, R., 1994, Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa, Proc. Natl. Acad. Sci. USA. 91: 974–978.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Van Vactor, D., Jr., Krantz, D. E., Reinke, R. and Zipursky, S. L., 1988, Analysis of mutants in chaoptin, a photoreceptor cell specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis, Cell. 52: 281–290.PubMedCrossRefGoogle Scholar
  33. 33.
    Arikawa, K., Molday, L. L., Molday, R. S. and Williams, D. S., 1992, Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: Relationship to disk membrane morphogenesis and retinal degeneration,. J. Cell Biol. 116: 659–667.PubMedCrossRefGoogle Scholar
  34. 34.
    Wells, J., Wroblewski, J., Keen, J., Inglehearn, C., Jubb, C., Eckstein, A., Jay, M., Arden, G., Bhattacharya, S., Fitzke, F. and Bird, A., 1993, Mutations in the human retinal degeneration slow (RDS) gene can cause either Retinitis-Pigmentosa or macular dystrophy, Nat Genet. 3: 213–218.PubMedCrossRefGoogle Scholar
  35. 35.
    Kemp, C. M., Jacobson, S. G., Cideciyan, A. V., Kimura, A. E., Sheffield, V. C. and Stone, E. M., 1994, RDS gene mutations causing retinitis pigmentosa or macular degeneration lead to the same abnormality in photoreceptor function, Invest Ophthalmol Visual Sci. 35: 3154–3162.Google Scholar
  36. 36.
    Vihtelic, T. S., Goebl, M., Milligan, S., O’Tousa, J. E. and Hyde, D. R., 1993, Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein, J. Cell Biol. 122: 1013–1022.PubMedCrossRefGoogle Scholar
  37. 37.
    Vihtelic, T. S., Hyde, D. R. and O’Tousa, J. E., 1991, Isolation and characterization of the Drosophila retinal degeneration B (rdgB) gene, Genetics. 127: 761–768.Google Scholar
  38. 38.
    Engelman, D. M. and Steitz, T. A., 1981, The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis, Cell. 23: 411–422.PubMedCrossRefGoogle Scholar
  39. 39.
    Dickeson, S. K., Lim, C. N., Schuyler, G. T., Dalton, T. P., Helmkamp, G. M. J. and Yarbrough, L. R., 1989, Isolation and sequence of cDNA clones encoding rat phosphatidylinositol transfer protein, J. Biol. Chem. 264: 16557–16564.PubMedGoogle Scholar
  40. 40.
    Wirtz, K. W. A., 1991, Phospholipid transfer proteins, Ann. Rev. Biochem. 60: 73–99.PubMedCrossRefGoogle Scholar
  41. 41.
    Sved, J., 1986, eyes absent (eya), Dros. Inf. Service. 63: 169.Google Scholar
  42. 42.
    Zipursky, C. S., Venkatesh, T. R., Teplow, D. B. and Benzer, S., 1984, Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes, Cell. 36: 15–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Carlson, S. D., Stark, W. S. and Chi, C., 1985, Rapid light induced degeneration of photoreceptor terminals in rdgB mutant of Drosophila, Invest. Opthal. Vis. Sci. Suppl. 26: 131.Google Scholar
  44. 44.
    Fujita, S. C., Zipursky, S. L., Benzer, S., Ferrus, A. and Shotwell, S. L., 1982, Monoclonal antibodies against the Drosophila nervous system, Proc. Natl. Acad. Sci. USA. 79: 7929–7933.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Matsumoto-Suzuki, E., Hirosawa, K. and Hotta, Y., 1989, Structure of the subrhabdomeric cisternae in the photoreceptor cells of D. melanogaster, J. Neurocyto. 18: 87–93.CrossRefGoogle Scholar
  46. 46.
    Baumann, O. and Walz, B., 1989, Topography of Ca+2-sequestering endoplasmic reticulum in photore-ceptors and pigmented glial cells in the compound eye of the honeybee drone, Cell Tissue Res. 255: 511–522.CrossRefGoogle Scholar
  47. 47.
    Payne, R., Walz, B., Levy, S. and Fein, A., 1988, The localization of calcium release by inositol trisphosphate in Limulus photoreceptors and its control by negative feedback, Phil. Trans. R. Soc. London. 320: 359–379.CrossRefGoogle Scholar
  48. 48.
    Hay, J. C. and Martin, T. F. J., 1993, Phosphatidylinositol transfer protein is required for ATP-dependent priming of Ca2+-activated secretion, Nature. 366: 572–575.PubMedCrossRefGoogle Scholar
  49. 49.
    Bankaitis, V. A., Malehorn, D. E., Emr, S. D. and Greene, R., 1989, The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex, J Cell Biol. 108: 1271–1281.PubMedCrossRefGoogle Scholar
  50. 50.
    Franzukoff, A. and Schekmann, R., 1989, Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation, EMBO J. 8: 2695–2702.Google Scholar
  51. 51.
    Cleves, A. E., McGee, T. P., Whitters, E. A., Champion, K. M., Aitken, J. R., Dowhan, W., Goebl, M. and Bankaitis, V., 1991, Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein, Cell. 64: 789–800.PubMedCrossRefGoogle Scholar
  52. 52.
    Suzuki, E. and Hiosawa, K., 1991, Immunoelectron microscopic study of the opsin distribution in the photoreceptor cell of Drosophila melanogaster, J. Electron Microsc. 40: 187–192.Google Scholar
  53. 53.
    Thomas, G. M. H., Cunningham, E., Fensome, A., Ball, A., Totty, N. F., Truong, O., Hsuan, J. J. and Cockcroft, S., 1993, An essential role for phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signaling, Cell. 74: 919–928.PubMedCrossRefGoogle Scholar
  54. 54.
    Skinner, H. B., McGee, T. P., McMaster, C. R., Fry, M. R., Bell, R. M. and Bankaitis, V. A., 1995, The Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity, Proc. Natl. Acad. Sci. USA. 92: 112–116.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Sahly, I., Bar-Nachum, S., Suss-Toby, E., Rom, A., Peretz, A., Kleiman, J., Byk, T., Selinger, Z. and Minke, B., 1992, Calcium channel blockers inhibit retinal degeneration in the retinal degeneration-B mutant of Drosophila, Proc. Natl. Acad. Sci. USA. 89: 435–439.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. R. Hyde
    • 1
  • S. Milligan
    • 1
  • T. S. Vihtelic
    • 2
  1. 1.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Massachusetts Eye and Ear Infirmary Department of OphthalmologyHowe LaboratoryBostonUSA

Personalised recommendations