Abnormal Ca2+ Mobilization and Excessive Photopigment Phosphorylation Lead to Photoreceptor Degeneration in Drosophila Mutants

  • Baruch Minke
  • Zvi Selinger


A great deal is known today about the identity of several gene products which are targets for mutations that induce retinal degeneration both in vertebrates and invertebrates (1–15). These mutant genes lead to various forms of retinal degeneration. However, the molecular mechanisms underlying the sequence of events which bring about retinal degeneration is still obscure. A common denominator of these mutant gene products is that most of them are proteins important for phototransduction. A clue to a molecular mechanism which initiates the degeneration process came from recent studies on retinal degeneration in Drosophila mutant photoreceptors in which the degeneration process is light-dependent, namely, the photoreceptors do not degenerate if the fly is raised in the dark.


Retinal Degeneration Photoreceptor Degeneration Degeneration Process Drosophila Mutant Phototransduction Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dryja, T.R, McGee, T.L., Reichel, E., Hahn, L.B., Cowley, G.S., Yandell, D.W., Sandberg, M.A., and Berson, E.L., 1990, A point mutation of the rhodopsin gene in one form of retinitis pigmentosa, Nature 343: 364–366.PubMedCrossRefGoogle Scholar
  2. 2.
    Bowes, C., Li, T., Danciger, M., Baxter, L.C., Applebury, M.L., and Farber, D.B., 1990, Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase, Nature 347: 677–680.PubMedCrossRefGoogle Scholar
  3. 3.
    Minke, B., and Selinger, Z., 1991, Inositol lipid pathway in fly photoreceptors, excitation, calcium mobilization and retinal degeneration, in Progress in Retinal Research, Vol. 11, ed. Osborne, N.N. and Chader, G.J., pp. 99–124, Oxford: Pergamon Press.Google Scholar
  4. 4.
    Harris, W.A., and Stark, W.L. 1977, Hereditary retinal degeneration inDrosophila melanogaster. Amutant defect associated with the phototransduction process, J. Gen. Physiol. 69: 261–291.PubMedCrossRefGoogle Scholar
  5. 5.
    Bloomquist, B.T., Shortridge, R.D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G., and Pak, W.L., 1974, Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction, Cell, 54: 723–733.CrossRefGoogle Scholar
  6. 6.
    O’Tousa, J.E., Leonard, D.S., and Pak, W.L., 1989, Morphological defects in oraJK84 photoreceptors caused by mutation in Rl-6 opsin gene of Drosophila, J. Neurogenet., 6: 41–52.Google Scholar
  7. 7.
    Steele, F., and O’Tousa, J.E., 1990, Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant, Neuron, 4: 883–890.PubMedCrossRefGoogle Scholar
  8. 8.
    Steele, F.R., Washburn, T., Rieger, R., and O’Tousa, J.E., 1992, Drosophila retina degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase, Cell, 69: 669–676.PubMedCrossRefGoogle Scholar
  9. 9.
    Vihtelic, T.S., Goebl, M., Milligan, S., O’Tousa, J.E., and Hyde, D.R., 1993, Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein, J. Cell Biol. 122(5): 1013–1022.PubMedCrossRefGoogle Scholar
  10. 10.
    Byk, T., Bar-Yaacov, M., Doza, Y.N., Minke, B., and Selinger, Z., 1993, Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell, Proc. Natl Acad. Sci. U.S.A. 90(5): 1907–1911.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Meyertholen, E.P., Stein, P.J., Williams, M.A., and Ostroy, S.E., 1987, Studies of the Drosophila norpA phototransduction mutant, J. Comp. Physiol. A. 161: 793–798.PubMedCrossRefGoogle Scholar
  12. 12.
    Dolph, P.J., Ranganathan, R., Colley, N.J., Hardy, R.W., Socolich, M., and Zuker, C.S., 1993, Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo, Science 260: 1910–1916.PubMedCrossRefGoogle Scholar
  13. 13.
    Porter, J.A., and Montell, C., 1993, Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis, J. Cell. Biol. 122: 601–612.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu, L., Niemeyer, B., Colley, N., Socolich, M., and Zuker, C.S., 1995, Regulation of PLC-mediated signalling in vivo by CDP-diacylglycerol synthase, Nature 373: 216–222.PubMedCrossRefGoogle Scholar
  15. 15.
    Inoue, H., Yoshioka, T., and Hotta, Y, 1989, Diacylglycerol kinase defect in a Drosophila retinal degeneration mutant rdgA, J. Biol. Chem. 264: 5996–6000.PubMedGoogle Scholar
  16. 16.
    Selinger, Z., Doza, Y.N., and Minke, B., 1993, Mechanisms and genetics of photoreceptors desensitization inDrosophila flies. Biochem. Biophys. Acta. 1179: 283–299.PubMedCrossRefGoogle Scholar
  17. 17.
    Peretz, A., Suss-Toby, E., Rom-Glass, A., Arnon, A., Payne, R., and Minke, B., 1994, The light response of Drosophila photoreceptors is accompanied by an increase in cellular calcium: effects of specific mutations, Neuron 12: 1257–1267.PubMedCrossRefGoogle Scholar
  18. 18.
    Ranganathan, R., Bacskai, B.J., Tsien, R.Y, and Zuker, C.S., 1994, Cytosolic calcium transients: Spatial localization and role in Drosophila photoreceptors cell function, Neuron, 13: 837–848.PubMedCrossRefGoogle Scholar
  19. 19.
    Hardie, R.C., and Minke, B., 1992, The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors, Neuron, 8: 643–651.PubMedCrossRefGoogle Scholar
  20. 20.
    Minke, B., 1982, Light-induced reduction in excitation efficiency in the trp mutant of Drosophila, J. Gen. Physiol. 79: 361–385.PubMedCrossRefGoogle Scholar
  21. 21.
    Sahly, I., Schroder, W.H., Zierold, K., and Minke, B., 1993, Accumulation of calcium in degenerating photoreceptors of several Drosophila mutants, Vis. Neurosci. 11: 763–772.CrossRefGoogle Scholar
  22. 22.
    Farber, L., 1981, The role of calcium in cell death, Life Sciences 29: 1289–1295.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Baruch Minke
    • 1
  • Zvi Selinger
    • 2
  1. 1.Kuhne Minerva Center for Studies of Visual Transduction Department of PhysiologyThe Hebrew UniversityJerusalemIsrael
  2. 2.Kuhne Minerva Center for Studies of Visual Transduction and Department of Biological ChemistryThe Hebrew UniversityJerusalemIsrael

Personalised recommendations