Advertisement

Drosophila as a Model for Photoreceptor Dystrophies and Cell Death

  • William S. Stark
  • David Hunnius
  • Jennifer Mertz
  • De-Mao Chen

Abstract

It is the silver anniversary of the isolation of Drosophila retinal degeneration mutants. The genes are still of substantial interest. Progress in neurobiology, developmental genetics and signal transduction has intensified as new molecular biology methods are applied. Retinal degeneration mutants display substantial cell death, informative by its specificity and its relationship with the visual excitation cascade. Other visual mutants best known for defects in visual pigment or phototransduction have various dystrophies. Light treatments and carotenoid deprivation also result in well-defined photoreceptor cell abnormalities. Since retinal degeneration in Drosophila was recently reviewed (1, 2, 3), the purpose of this paper is limited to presenting an overview and our recent data.

Keywords

Retinitis Pigmentosa Light Treatment Visual Pigment Retinal Degeneration Opsin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pak, W. L., 1994, Retinal degeneration mutants of Drosophila, in “ Molecular genetics of inherited eye disorders,” A. Wright and B. Jay, eds., Reading, Berkshire, UK, Harwood Academic Publishers, pp. 29–52.CrossRefGoogle Scholar
  2. 2.
    Stark, W. S., J. S. Christianson, L. Maier, and D.-M. Chen, 1991, Inherited and environmentally induced retinal degenerations in Drosophila, in “ Retinal Degenerations,” R. E. Anderson, J. G. Hollyfield and M. M. LaVail, eds., New York, CRC Press, Inc., pp. 61–75.Google Scholar
  3. 3.
    Stark, W. S., and R. J. Sapp, 1989, Retinal degeneration and photoreceptor maintenance in Drosophila: rdgB and its interaction with other mutants, in “ Inherited and Environmentally Induced Retinal Degenerations,” M. M. LaVail, R. E. Anderson and J. G. Hollyfield, eds., New York, Liss, pp. 467–489.Google Scholar
  4. 4.
    Benzer, S., 1967, Behavioral mutants of Drosophila isolated by countercurrent distribution, Proc. Nat. Acad. Sci. (USA) 58: 1112–1119.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hotta, Y, and S. Benzer, 1969, Abnormal electroretinograms in visual mutants of Drosophila, Nature (Lond.) 222: 354–356.CrossRefGoogle Scholar
  6. 6.
    Hotta, Y, and S. Benzer, 1970, Genetic dissection of the Drosophila nervous system by means of mosaics, Proc. Nat. Acad. Sci. (USA) 67: 1156–1163.CrossRefGoogle Scholar
  7. 7.
    Pak, W. L., J. Grossfield, and N. V. White, 1969, Nonphototactic mutants in a study of vision of Drosophila, Nature (Lond.) 222: 351–354.CrossRefGoogle Scholar
  8. 8.
    Pak, W. L., J. Grossfield, and K. Arnold, 1970, Mutants of the visual pathway of Drosophila melanogaster, Nature 222: 518–520.CrossRefGoogle Scholar
  9. 9.
    Heisenberg, M., 1971, Isolation of mutants lacking the optomotor response, Dros. Inf. Serv. 46: 68.Google Scholar
  10. 10.
    Cosens, D., and A. Manning, 1969, Abnormal electroretinogram from a Drosophila mutant, Nature (Lond.) 224: 285–287.CrossRefGoogle Scholar
  11. 11.
    Koenig, J. H., and J. R. Merriam, 1977, Autosomal ERG mutants, Drosoph. Inform. Serv. 52: 50–51.Google Scholar
  12. 12.
    Harris, W. A., and W. S. Stark, 1977, Hereditary retinal degeneration in Drosophila melanogaster: a mutant defect associated with the phototransduction process, J. Gen. Physiol. 69: 261–291.PubMedCrossRefGoogle Scholar
  13. 13.
    Harris, W. A., W. S. Stark, and J. A. Walker, 1976, Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster, J. Physiol. (Lond.) 256: 415–439.CrossRefGoogle Scholar
  14. 14.
    Stark, W. S., A. M. Ivanyshyn, and K. G. Hu, 1976, Spectral sensitivities and photopigments in adaptation of fly visual receptors, Naturwissen. 63: 513–518.CrossRefGoogle Scholar
  15. 15.
    LaVail, M. M., and R. J. Mullen, 1976, Role of pigment epithelium in inherited retinal degeneration analysed with experimental mouse chimeras, Exp. Eye Res. 23: 227–245.PubMedCrossRefGoogle Scholar
  16. 16.
    Mullen, R. J., and M. M. LaVail, 1976, Inherited retinal dystrophy: Primary defect in pigment epithelium determined with experimental rat chimeras, Science 192: 799–801.PubMedCrossRefGoogle Scholar
  17. 17.
    Cicerone, C. M., 1976, Cones survive rods in the light-damaged eye of the albino rat, Science 194: 1183–1185.PubMedCrossRefGoogle Scholar
  18. 18.
    Stark, W. S., and S. D. Carlson, 1984, Blue and ultraviolet light induced damage to the Drosophila retina: ultrastructure., Curr. Eye Res. 3: 1441–1454.PubMedCrossRefGoogle Scholar
  19. 19.
    Noell, W. K., M. C. Delmelle, and R. Albrecht, 1971, Vitamin A deficiency effect on the retina: dependence on light, Science 172: 72–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Noell, W. K., and R. Albrecht, 1971, Irreversible effects of visible light on the retina: Role of vitamin A, Science 172: 76–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Farber, D. B., and R. N. Lolley, 1973, Proteins in the degenerative retina of C3H mice: Deficiency of a cyclic nucleotide phosphodiesterase and opsin, J. Neurochem. 21: 817–828.PubMedCrossRefGoogle Scholar
  22. 22.
    Stark, W. S., K. D. Walker, and J. M. Eidel, 1985, Ultraviolet and blue light induced damage to the Drosophila retina: Microspectrophotometry and electrophysiology, Curr. Eye Res. 4: 1059–1075.PubMedCrossRefGoogle Scholar
  23. 23.
    Ham, W. T. Jr., H. A. Mueller, J. J. Jr. Ruffolo, and A. M. Clarke, 1979, Sensitivity of the retina to radiation damage as a function of wavelength, Photochem. Photobiol. 29: 735–743.PubMedCrossRefGoogle Scholar
  24. 24.
    Ham, W. T. Jr., H. A. Mueller, J. J. Jr. Ruffolo, J. E. Millen, S. F. Cleary, R. K. Guerry, and D. I. Guerry, 1984, Basic mechanisms underlying the production of photochemical lesions in the mammalian retina, Curr. Eye Res. 3: 165–174.PubMedCrossRefGoogle Scholar
  25. 25.
    Sperling, H. G., R. S. Johnson, and R. S. Harwerth, 1980, Differential spectral photic damage to primate cones, Vision Res. 20: 1117–1125.PubMedCrossRefGoogle Scholar
  26. 26.
    Zinkl, G., L. Maier, K. Studer, R. Sapp, D. M. Chen, and W. S. Stark, 1990, Microphotometric, ultrastructural and electrophysiological analyses of light dependent processes on visual receptors in white-eyed wild-type and norpA (no receptor potential) mutant Drosophila., Vis. Neurosc. 5: 429–439.CrossRefGoogle Scholar
  27. 27.
    Masai, I., A. Okazaki, T. Hosoya, and Y. Hotta, 1993, Drosophila retinal degeneration A gene encodes an eye-specific diacylglycerol kinase with cysteine-rich zinc-finger motifs and ankyrin repeats, Proc. Natl. Acad. Sci. USA 90: 11157–11161.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Yoshioka, T., H. Inoue, and Y. Hotta, 1985, Absence of phosphotidylinositol phosphodiesterase in the head of a Drosophila visual mutant, norpA (no receptor potential A), J. Biochem. 97: 1251–1254.PubMedGoogle Scholar
  29. 29.
    Bloomquist, B. T., R. D. Shortridge, S. Schnewly, M. Perdew, C. Montell, H. Steller, G. Rubin, and W. L. Pak, 1988, Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction, Cell 54: 723–739.PubMedCrossRefGoogle Scholar
  30. 30.
    Hyde, D. R., S. Milligan, D. Paetkau, and T. S. Vihtelic, 1994, The role of the retinal degeneration B protein in the Drosophila visual system, Int. Symp. Ret. Degen. 6: 18.Google Scholar
  31. 31.
    Kurada, P., and J. E. O’ Tousa, 1994B, The role of dominant rhodopsin mutations in Drosophila retinal degeneration, Int. Symp. Ret. Degen. 6: 17.Google Scholar
  32. 32.
    Vihtelic, T. S., D. R. Hyde, and J. E. O’ Tousa, 1991, Isolation and characterization of the Drosophila retinal degeneration B (rdgB) gene, Genetics 127: 761–768.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Vihtelic, T. S., M. Goebl, S. Milligan, J. E. O’ Tousa, and D. R. Hyde, 1993, Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein, J. Cell Biol. 122: 1013–1022.PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki, E., and K. Hirosawa, 1994, Immunolocalization of a Drosophila phosphatidylinositol transfer protein (rdgB) in normal and rdgA mutant photoreceptor cells with special reference to the subrhab-domeric cisternae, J. Electron Microsc. 43: 183–189.Google Scholar
  35. 35.
    Sahly, I., W. H. Schroder, K. Zierold, and B. Minke, 1994, Accumulation of calcium in degenerating photoreceptors of several Drosophila mutants, Vis. Neurosci. 11: 763–772.PubMedCrossRefGoogle Scholar
  36. 36.
    Rubenstein, C. T., S. Bar-Nachum, Z. Selinger, and B. Minke, 1989 A, Chemically induced retinal degeneration in the rdgB (retinal degeneration B) mutant of Drosophila, Vis. Neurosci. 2: 541–551.CrossRefGoogle Scholar
  37. 37.
    Steele, F. R., T. Washburn, R. Rieger, and J. E. O’ Tousa, 1992, Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase, Cell 69: 669–676.PubMedCrossRefGoogle Scholar
  38. 38.
    Ostroy, S. E., 1978, Characteristics of Drosophila rhodopsin in wild-type and norpA vision transduction mutants, J. Gen. Physiol. 72: 717–732.PubMedCrossRefGoogle Scholar
  39. 39.
    Meyertholen, E. P., P. J. Stein, M. A. Williams, and S. E. Ostroy, 1987, Studies of the Drosophila norpA phototransduction mutant, J. Comp. Phys. 161: 793–798.CrossRefGoogle Scholar
  40. 40.
    Stark, W. S., R. J. Sapp, and S. D. Carlson, 1989A, Photoreceptor maintenance and degeneration in the norpA (no receptor potential-A) mutant of Drosophila melanogaster, J. Neurogenet. 5: 49–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Chen, D.-M., and W. S. Stark, 1992, Electrophysiological sensitivity of carotenoid deficient and replaced Drosophila, Vis. Neurosci. 9: 461–469.PubMedCrossRefGoogle Scholar
  42. 42.
    Sapp, R. J., J. S. Christianson, L. Maier, K. Studer, and W. S. Stark, 1991A, Carotenoid replacement therapy in Drosophila: recovery of membrane, opsin and rhodopsin., Exp. Eye Res. 53: 71–79.CrossRefGoogle Scholar
  43. 43.
    Lee, R. D., C. F. Thomas, R. G. Marietta, and W. S. Stark, 1995, Vitamin A, visual pigments and visual receptors in Drosophila, Micros. Res. Tech. in: press.Google Scholar
  44. 44.
    Sun, D., D.-M. Chen, A. Harrelson, and W. S. Stark, 1993, Increased expression of chloramphenicol acetyltransferase by carotenoid and retinoid replacement in Drosophila opsin promoter fusion stocks, Exp. Eye Res. 57: 177–187.PubMedCrossRefGoogle Scholar
  45. 45.
    Katz, M. L., C. L. Gao, M. Kutryb, N. Norberg, R. H. White, and W. S. Stark, 1991, Maintenance of opsin density in photoreceptor outer segments of retinoid-deprived rats, Invest. Ophthalmol. Vis. Sci. 32: 1968–1980.PubMedGoogle Scholar
  46. 46.
    Katz, M. L., D.-M. Chen, H. J. Stientjes, and W. S. Stark, 1993, Photoreceptor recovery in retinoid-deprived rats after vitamin A replenishment, Exp. Eye Res 56: 671–682.PubMedCrossRefGoogle Scholar
  47. 47.
    Schinz, R. H., M. V. C. Lo, D. C. Larrivee, and W. L. Pak, 1982, Freeze-fracture study of the Drosophila photoreceptor membrane: Mutations affecting membrane particle density, J. Cell Biol. 93: 961–969.PubMedCrossRefGoogle Scholar
  48. 48.
    Scavarda, N. J., J. O’ Tousa, and W. L. Pak, 1983, Drosophila locus with gene-dosage effects on rhodopsin, Proc. Nat. Acad. Sci. (USA)80: 4441–4445.CrossRefGoogle Scholar
  49. 49.
    O’Tousa, J. E., W. Baehr, R. L. Martin, J. Hirsh, W. L. Pak, and M. L. Applebury, 1985, The Drosophila ninaE gene encodes an opsin, Cell 40: 839–850.PubMedCrossRefGoogle Scholar
  50. 50.
    Zuker, C. S., A. F. Cowman, and G. M. Rubin, 1985, Isolation and structure of a rhodopsin gene from D. melanogaster, Cell 40: 851–858.PubMedCrossRefGoogle Scholar
  51. 51.
    Washburn, T., and J. E. O’Tousa, 1989, Molecular defects in Drosophila rhodopsin mutants, J. Biol. Chem. 15464–15466.Google Scholar
  52. 52.
    O’Tousa, J. E., D. S. Leonard, and W. L. Pak, 1989, Morphological defects in oraJK84 photoreceptors caused by mutation in Rl-6 opsin gene in Drosophila, J. Neurogenet. 6: 41–52.PubMedCrossRefGoogle Scholar
  53. 53.
    O’Tousa, J. E., 1992, Requirement of N-linked glycosylation site in Drosophila rhodopsin, Vis. Neurosci. 8: 385–390.PubMedCrossRefGoogle Scholar
  54. 54.
    Washburn, T., and J. E. O’Tousa, 1992, Nonsense suppression of the major rhodopsin gene in Drosophila, Genetics 130: 585–595.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Leonard, D. S., V. D. Bowman, D. F. Ready, and W. L. Pak, 1992, Degeneration of photoreceptors in rhodopsin mutants of Drosophila, J. Neurobiol. 23: 605–626.PubMedCrossRefGoogle Scholar
  56. 56.
    Stark, W. S., and S. D. Carlson, 1983, Ultrastructure of the compound eye and first optic neuropile of the photoreceptor mutant oraJK84 of Drosophila, Cell Tiss. Res. 233: 305–317.CrossRefGoogle Scholar
  57. 57.
    Stark, W. S., and R. J. Sapp, 1987, Ultrastructure of the retina of Drosophila melanogaster: The mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B), J. Neurogenet. 4: 227–240.PubMedGoogle Scholar
  58. 58.
    Kurada, P., and O’Tousa, 1994A, The role of ninaE dominant mutations in retinal degeneration, Dros. Res. Conf. 35: 11.Google Scholar
  59. 59.
    Brown, G., D.-M. Chen, J. S. Christianson, R. Lee, and W. S. Stark, 1994, Receptor demise from alteration of glycosylation site in Drosophila opsin: Electrophysiology, microspectrophotometry, and electron microscopy, Vis. Neurosci. 11: 619–628.PubMedCrossRefGoogle Scholar
  60. 60.
    Britt, S. G., R. Feiler, K. Kirschfeld, and C. S. Zuker, 1993, Spectral tuning of rhodopsin and metarhodopsin in vivo, 11: 29–39.Google Scholar
  61. 61.
    Colley, N. J., E. K. Baker, M. A. Stamnes, and C. S. Zuker, 1991, The cyclophilin homolog ninaA is required in the secretory pathway, Cell 67: 255–263.PubMedCrossRefGoogle Scholar
  62. 62.
    Stark, W. S., 1994, Rl-6 visual pigment is reduced by green light in Drosophila, Exp. Eye Res. 59: S.33.Google Scholar
  63. 63.
    Chen, D.-M., G. Brown, and W. S. Stark, 1993, Sensitivity and rhabdomere decreases in heterozygotes of ora, a nonsense mutant allele of ninaE, the Drosophila rhl opsin gene, Invest. Ophthalmol. Vis. Sci. 34: 808.Google Scholar
  64. 64.
    Stark, W. S., A. M. Ivanyshyn, and R. M. Greenberg, 1977, Sensitivity and photopigments of Rl-6, a two-peaked photoreceptor, in Drosophila, Calliphora and Musca, J. Comp. Physiol. 121: 289–305.CrossRefGoogle Scholar
  65. 65.
    Stark, W. S., and M. A. Johnson, 1980, Microspectrophotometry of Drosophila visual pigments: Determinations of conversion efficiency in Rl-6 receptors, J. Comp. Physiol. 140: 275–286.CrossRefGoogle Scholar
  66. 66.
    Stark, W. S., D.-M. Chen, M. A. Johnson, and K. L. Frayer, 1983, The rdgB gene in Drosophila: Retinal degeneration in different mutant alleles and inhibition of degeneration by norpA, J. Insect Physiol. 29: 123–131.CrossRefGoogle Scholar
  67. 67.
    Chen, D.-M., J. S. Christianson, R. J. Sapp, and W. S. Stark, 1992, Visual receptor cycle in normal and period mutant Drosophila: Microspectrophotometry, electrophysiology, and ultrastructural morphometry, Vis. Neurosci. 9: 125–135.PubMedCrossRefGoogle Scholar
  68. 68.
    Stark, W. S., and A. W. Clark, 1973, Visual synaptic structure in normal and blind Drosophila, Drosoph. Inform. Serv. 50: 105–106.Google Scholar
  69. 69.
    Stark, W. S., and G. S. Wasserman, 1972, Transient and receptor potentials in the electroretinogram of Drosophila, Vision Res. 12: 1771–1775.PubMedCrossRefGoogle Scholar
  70. 70.
    Rosenfeld, P. J., G. S. Cowley, T. L. McGee, M. A. Sandberg, E. L. Berson, and T. P. Dryja, 1992, A Null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa, Nature Genetics 1: 209–213.PubMedCrossRefGoogle Scholar
  71. 71.
    Ostroy, S. E., M. Wilson, and W. L. Pak, 1974, Drosophila rhodopsin: photochemistry, extraction and differences in the norpAP12 phototransduction mutant, Biochem. Biophys. Res. Comm. 59: 960–966.PubMedCrossRefGoogle Scholar
  72. 72.
    Pak, W. L., and K. L. Lidington, 1974, Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment, J. Gen. Physiol. 63: 740–756.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Schwemer, J., 1984, Renewal of visual pigment in photoreceptors of the blowfly, J. Comp. Physiol. 154: 535–547.CrossRefGoogle Scholar
  74. 74.
    Smakman, J. G. J., and D. G. Stavenga, 1986, Spectral sensitivity of blowfly visual receptors: dependence on waveguide effects and pigment concentration, Vision Res. 26: 1019–1025.PubMedCrossRefGoogle Scholar
  75. 75.
    Hamdorf, K., P. Hochstrate, G. Hoglund, M. Moser, S. Sperber, and P. Schlecht, 1992, Ultra-violet sensitizing pigment in blowfly photoreceptors Rl-6; probable nature and binding sites, J. Comp. Physiol. 171: 601–615.CrossRefGoogle Scholar
  76. 76.
    Schwemer, J., and F. Spengler, 1992, Opsin synthesis in blowfly photoreceptors is controlled by an 11-cis retinoid, in “ Structures and Functions of Retinal Proteins,” J. L. Rigaud, eds., Montrouge, France, John Libbey Eurotext, pp. 277–280.Google Scholar
  77. 77.
    Huber, A., U. Wolfrum, and R. Paulsen, 1994, Opsin maturation and targeting to rhabdomeral photore-ceptor membranes requires the retinal chromophore, Eur. J. Cell Biol. 63: 219–229.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • William S. Stark
    • 1
  • David Hunnius
    • 1
  • Jennifer Mertz
    • 1
  • De-Mao Chen
    • 1
  1. 1.Department of BiologySaint Louis UniversitySt. LouisUSA

Personalised recommendations