Advertisement

Effect of Sugars on Photoreceptor Outer Segment Assembly

  • Monica M. Stiemke
  • Joe G. Hollyfield

Abstract

During embryonic development, the rudimentary layers that will become the pigment epithelium (PE) and the neural retina are brought into close proximity upon the collapse of the optic vesicles. At this developmental stage, the retina is morphologically undifferentiated and photoreceptor outer segments have not yet begun to form. The close apposition of the PE and photoreceptors prior to the time when outer segments first appear raises the possibility that the PE could be a source of signals that induce or regulate photoreceptor development and outer segment elaboration. Also, the observation that outer segment development is limited in the absence of the PE in most species suggests that interactions between these two cell types may be of fundamental importance for the structural and functional maturation of photoreceptors [1, 2, 3, 5, 13, 16, 19, 20, 26].

Keywords

Retinal Detachment Outer Segment Photoreceptor Cell Photoreceptor Outer Segment Exogenous Sugar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler R (1986) Developmental predetermination of the structural and molecular polarization of photoreceptor cells. Dev. Biol., 117: 520–527.PubMedCrossRefGoogle Scholar
  2. 2.
    Adler R (1987) Nature and nurture in the differentiation of retinal photoreceptors and neurons. Cell Differ., 20: 183–188.PubMedCrossRefGoogle Scholar
  3. 3.
    Adler R, Politi L (1989) Expression of a “ survival crisis” by normal and rd/rd mouse photoreceptor cells in vitro. In: LaVail MM, Anderson RE, Hollyfield JG (eds) Inherited and environmentally induced retinal degenerations, Alan R. Liss, Inc., New York, pp 169–181.Google Scholar
  4. 4.
    Anderson DH, Gué rin CJ, Erickson PA, Stern WH, Fisher SK (1986) Morphological recovery in the reattached retina. Invest. Ophthalmol. Vis. Sci., 27: 168–183.PubMedGoogle Scholar
  5. 5.
    Caffé AR, Visser H, Jansen HG, Sanyal S (1989) Histopathic differentiation of neonatal mouse retina in organ culture. Curr. Eye Res., 8: 1083–1092.PubMedCrossRefGoogle Scholar
  6. 6.
    Defoe DM, Besharse JC, Fliesler SJ (1986) Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. I. Quantitative freeze-fracture analysis. Invest. Ophthalmol. Vis. Sci., 27: 1595–1601.PubMedGoogle Scholar
  7. 7.
    Erickson PA, Fisher SK, Anderson DH, Stern WH, Borgula GA (1983) Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Invest. Ophthalmol. Vis. Sci., 24: 927–942.PubMedGoogle Scholar
  8. 8.
    Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature, 347: 83–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Fliesler SJ, Rayborn ME, Hollyfield JG (1985) Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. J. Cell Biol., 100: 574–587.PubMedCrossRefGoogle Scholar
  10. 10.
    Fliesler SJ, Rayborn ME, Hollyfield JG (1986) Inhibition of oligosaccharide processing and membrane morphogenesis in retinal rod photoreceptor cells. Proc. Natl. Acad. Sci., 83: 6435–6439.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gué rin CJ, Anderson DH, Fariss RN, Fisher SK (1989) Retinal reattachment of the primate macula. Invest. Ophthalmol. Vis. Sci., 30: 1708–1725.Google Scholar
  12. 12.
    Guérin CJ, Lewis GP, Fisher SK, Anderson DH (1993) Recovery of photoreceptor outer segment length and analysis of membrane assembly rates in regenerating primate photoreceptor outer segments. Invest. Ophthalmol. Vis. Sci., 34: 175–183.PubMedGoogle Scholar
  13. 13.
    Lahav M (1987) In vitro model of retinal photoreceptor differentiation. Trans. Am. Ophthalmol. Soc, 85: 600–638.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Lahiri D, Hollyfield JG (1992) Development of WGA-binding domains in the IPM of Xenopus laevis embryos. Invest. Ophthalmol. Vis. Sci. (Suppl.), 33: 815.Google Scholar
  15. 15.
    Lahiri D, Rayborn ME, Hollyfield JG (1991) Development of the IPM in Xenopus laevis embryos. Invest. Ophthalmol. Vis. Sci. (Suppl.)32: 1217.Google Scholar
  16. 16.
    LaVail MM, Hild W (1971) Histotypic organization of the rat retina in vitro. Z. Zellforsch, 114: 557–579.CrossRefGoogle Scholar
  17. 17.
    Lewis GP, Erickson PA, Anderson DH, Fisher SK (1991) Opsin distribution and protein incorporation in photoreceptors after experimental retinal detachment. Exp. Eye Res., 53: 629–640.PubMedCrossRefGoogle Scholar
  18. 18.
    Li L, Turner JE (1991) Optimal conditions for long-term photoreceptor cell rescue in RCS rats: The necessity for healthy RPE transplants. Exp. Eye Res., 52: 669–679.PubMedCrossRefGoogle Scholar
  19. 19.
    Politi LE, Lahav M, Adler R (1988) Development of neonatal mouse retinal neurons and photoreceptors in low density cell culture. Invest. Ophthalmol. Vis. Sci., 29: 534–543.PubMedGoogle Scholar
  20. 20.
    Roof D, Hayes A, Adamian M, Marescalchi P, Heth C (1991) Photoreceptor development in rat neural retina-retinal pigment epithelium co-cultures. Invest. Ophthalmol. Vis. Sci., 32: 1148.Google Scholar
  21. 21.
    Stiemke MM, Hollyfield JG (1994) Outer segment disc membrane assembly in the absence of the pigment epithelium: The effect of exogenous sugars. Dev. Brain Res., 80: 285–289.CrossRefGoogle Scholar
  22. 22.
    Stiemke MM, Landers RA, Al-Ubaidi MR, Hollyfield JG (1994) Photoreceptor outer segment development in Xenopus laevis: Influence of the pigment epithelium. Dev. Biol., 162: 169–180.PubMedCrossRefGoogle Scholar
  23. 23.
    Takeda Y, Yamaguchi K, Yamada K, Matthes MT (1993) Photoreceptor rescue of Royal College of Surgeons (RCS) rat retina by human subretinal fluid. Invest. Ophthalmol. Vis. Sci., 34: 1097.Google Scholar
  24. 24.
    Travis GH, Sutcliffe JG, Bok D (1991) The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Neuron, 6: 61–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Ulshafer RJ, Allen CB, Fliesler SJ (1986) Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. II. A scanning electron microscopy study. Invest. Ophthalmol. Vis. Sci., 27: 1587–1594.PubMedGoogle Scholar
  26. 26.
    Watanabe T, Raff MC (1990) Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron, 2: 461–467.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Monica M. Stiemke
    • 1
  • Joe G. Hollyfield
    • 1
  1. 1.Cullen Eye InstituteBaylor College of MedicineHoustonUSA

Personalised recommendations