Advertisement

Integration of Structure, Function and Mass Transport in the Myocardium

  • Daniel Zinemanas
  • Rafael Beyar
  • Samuel Sideman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 382)

Abstract

A left ventricular (LV) model that integrates muscle mechanics, coronary flow, and fluid transport, and accounts for the three-phase (fiber-blood-interstitium) myocardial structure and composition, is used to study the interactions between the mechanics, coronary flow and fluid and mass transport in the myocardium. Theoretical simulations elucidate the effects of ventricular load, coronary perfusion pressure, and fluid and mass transport on ventricular performance and coronary dynamics. The analysis yields a direct relation between cardiac function and structure to cardiac mechanics, coronary flow, and intramyocardial fluid (and mass) transport, and allows to study the interactions between coronary flow, ventricular and myocardial mechanics and intramyocardial fluid shifts.

Keywords

Coronary Flow Interstitial Fluid Coronary Blood Flow Aortic Pressure Left Ventricular Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kouwenhoven E, Vergroesem Y, Spaan JAE. Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 1992;263:H484–H490.PubMedGoogle Scholar
  2. 2.
    Kresh JY. Myocardial modulation of coronary circulation (letter). Am J Physiol. 1989;257: H1934–H1935.Google Scholar
  3. 3.
    Fukui A, Yamaguchi S, Tamada Y, Miyawaki H, Baniya G, Shirakabe M. Different effects of coronary perfusion pressure on diastolic properties of left and right ventricles (Abstract). Circulation 1991; 84:II–45.Google Scholar
  4. 4.
    Kresh JY, Frash F, McVey M, Brockman SK, Noordergraaf A. Mechanical coupling of the myocardium with coronary circulation in the beating and arrested heart (Abstract). Circulation. 1990; 84:II–45.Google Scholar
  5. 5.
    McCulloch AD, Hunter PJ, Smaill BH. Mechanical effects of coronary perfusion in the passive canine left ventricle. Am J Physiol 1992;262:H523–H530.PubMedGoogle Scholar
  6. 6.
    Anderson SE, Johnson JA. Tissue-fluid pressure measured in perfused rabbit hearts during osmotic transients. Am J Physiol 1987;252:H1127–H1137.PubMedGoogle Scholar
  7. 7.
    Arts T, Veenstra PC, Reneman RS. Transmural course of stress and sarcomere length in the left ventricle under normal hemodynamic circumstances. In: Baan J, Arntsenius AC, Yellin EL, eds, Cardiac Dynamics. The Hague: Martinus Nijhoff, 1980; 115–122.CrossRefGoogle Scholar
  8. 8.
    Beyar R, Sideman S. A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics and transmural electrical propagation velocity. Circ Res. 1984;55:358–375.PubMedCrossRefGoogle Scholar
  9. 9.
    Beyar R, Ben-Ari R, Gibbons-Kroeker CA, Tyberg JV, Sideman S. The effect of interconnecting collagen fibers on LV function and intramyocardial compression. Cardiovasc Res. 1993;27(12): 2254–2263.PubMedCrossRefGoogle Scholar
  10. 10.
    Chadwick RS. Mechanics of the left ventricle. Biophys J. 1980;39:279–288.CrossRefGoogle Scholar
  11. 11.
    Huyghe JM, Arts T, van Campen DH, Reneman RS. Porous medium finite element model of the beating left ventricle. Am J Physiol 1992;262:H1256–H1267.PubMedGoogle Scholar
  12. 12.
    Nevo E, Lanir Y. Structural finite deformation model of the left ventricle during diastole and systole. J Biomech Eng Trans ASME. 1989;111:342–349.CrossRefGoogle Scholar
  13. 13.
    Ohayon J, Chadwick RS. Effects of collagen microstructure in the mechanics of the left ventricle. Biophys J. 1988;54:1077–1088.PubMedCrossRefGoogle Scholar
  14. 14.
    Beyar R, Sideman S. Time dependent coronary blood flow distribution in the left ventricular wall. Am J Physiol 1987;252:H417–H433.PubMedGoogle Scholar
  15. 15.
    Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI. Phasic regional myocardial inflow and outflow: comparison of theory and experiments. Am J Physiol 1990;258:H1687–H1698.PubMedGoogle Scholar
  16. 16.
    Kresh JY, Fox M, Brockman SK, Noordergraaf A. Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am J Physiol 1990;258:H262–H276.PubMedGoogle Scholar
  17. 17.
    Bruinsma P, Arts T, Dankelman J, Spaan JAE. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Bas Res Card. 1988;83:510–524.CrossRefGoogle Scholar
  18. 18.
    Downey JM, Kirk ES. Inhibition of coronary flow by vascular waterfall mechanism. Circ Res. 1975;36:753–760.PubMedCrossRefGoogle Scholar
  19. 19.
    Spaan JAE, Breuls N, Laired J. Diastolic systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981;49:584–593.PubMedCrossRefGoogle Scholar
  20. 20.
    Krams R, Sipkema P, Westerhof N. Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure. Am J Physiol 1990;258:H1889–H1898.PubMedGoogle Scholar
  21. 21.
    Krams R, Sipkema P, Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 1989;257:H1471–H1479.PubMedGoogle Scholar
  22. 22.
    Zinemanas D, Beyar R, Sideman S. Effects of myocardial contraction on coronary blood flow: an integrated model, transport. Annals Biomed Eng. 1994;22(6):638–652.CrossRefGoogle Scholar
  23. 23.
    Rubboli A, Sobotka PA, Euler DE. Effect of acute edema on left ventricular function and coronary vascular resistance in the isolated rat heart. Am J Physiol. 1994;267:H1054–H1061.PubMedGoogle Scholar
  24. 24.
    Zinemanas D, Beyar R, Sideman S. Intramyocardial fluid transport effects on coronary flow and LV mechanics. In: Sideman S, Beyar R, eds, Interactive Phenomena in the Cardiac System. New York: Plenum Press, 1993; 219–231.CrossRefGoogle Scholar
  25. 25.
    Zinemanas D, Beyar R, Sideman S. Relating muscle mechanics, blood flow and mass transport interactions in the LV wall. Int J Heat & Mass Trans. 1994;37:191–205.CrossRefGoogle Scholar
  26. 26.
    Zinemanas D, Beyar R, Sideman S. An integrated model of LV muscle mechanics, coronary flow and fluid and mass transport. Am J Physiol. 1995;268: (in press).Google Scholar
  27. 27.
    Gonzalez F, Bassingthwaigthe JB. Heterogeneities in regional volumes of distribution and flows in rabbit heart. Am J Physiol 1990;258:H1012–H1024.PubMedGoogle Scholar
  28. 28.
    Beyar R, Caminker R, Manor D, Sideman S. Coronary flow patterns in normal and ischemic hearts: Transmyocardial and artery to vein distribution. Annals Biomed Eng. 1993;21:435–458.CrossRefGoogle Scholar
  29. 29.
    Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958;27:229–246.PubMedCrossRefGoogle Scholar
  30. 30.
    Baird RJ, Manktelow RT, Shah PA, Ameli FM. Intramyocardial pressure. A study of its regional variations and its relationship to intraventricular pressure. J Thor Card Surg. 1970;59:810–823.Google Scholar
  31. 31.
    Cantin B, Rouleau JR. Myocardial tissue pressure and blood flow during coronary sinus pressure modulation in anesthetized dogs. J Appl Physiol 1992;73:2184–2191.PubMedGoogle Scholar
  32. 32.
    Rabbany SY, Kresh JY, Noordergraaf A. Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol. 1989;257:H357–H364.PubMedGoogle Scholar
  33. 33.
    Stein PD, Sabbah HN, Marzili M. Intramyocardial pressure and coronary extravascular resistance. J Biomech Eng Trans ASME. 1985;107:46–50.CrossRefGoogle Scholar
  34. 34.
    Stein PD, Marzili M, Sabbah HN, Lee T. Systolic and diastolic pressure gradients within the left ventricular wall. Am J Physiol 1980;238:H625–H630.PubMedGoogle Scholar
  35. 35.
    Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 1989;257:H1936–H1944.PubMedGoogle Scholar
  36. 36.
    Doucette JW, Goto M, Hynn AE, Austin RE Jr, Husseini W, Hoffmian JIE. Effects of cardiac contraction and cavity pressure on myocardial blood flow. Am J Physiol. 1993;265:H1342–H1352.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Daniel Zinemanas
  • Rafael Beyar
  • Samuel Sideman
    • 1
  1. 1.Heart System Research Center, The Julius Silver Institute, Department of Biomedical EngineeringTechnion-IITHaifaIsrael

Personalised recommendations